Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite
详细信息    查看全文
  • 作者:A. Taubert ; C. Hermosilla ; L. M. R. Silva ; A. Wieck ; K. Failing…
  • 刊名:Parasitology Research
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:115
  • 期:5
  • 页码:2023-2034
  • 全文大小:1,699 KB
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1955
  • 卷排序:115
文摘
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-d-glucose and 2-deoxy-d-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-l-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.KeywordsCoccidiaMetabolic signatureGlycolysisGlutaminolysisDON2-Deoxy-d-glucose

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700