Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond
详细信息    查看全文
  • 作者:Marko Rožman
  • 关键词:Glycosphingolipid ; MSMS ; RRKM ; Low ; energy CID ; Modeling
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:91-98
  • 全文大小:947 KB
  • 参考文献:1.Chai, W., Piskarev, V., Lawson, A.M.: Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 670–679 (2002)CrossRef
    2.Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., Packer, N.H.: Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun. Mass Spectrom. 18, 2282–2292 (2004)CrossRef
    3.Yang, K., Cheng, H., Gross, R.W., Han, X.: Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal. Chem. 81, 435–4368 (2009)CrossRef
    4.Wenk, M.R.: Lipidomics: new tools and applications. Cell 143, 888–895 (2010)CrossRef
    5.Wada, Y., Dell, A., Haslam, S.M., Tissot, B., Canis, K., Azadi, P., Bäckström, M., Costello, C.E., Hansson, G.C., Hiki, Y., Ishihara, M., Ito, H., Kakehi, K., Karlsson, N., Hayes, C.E., Kato, K., Kawasaki, N., Khoo, K.-H., Kobayashi, K., Kolarich, D., Kondo, A., Lebrilla, C., Nakano, M., Narimatsu, H., Novak, J., Novotny, M.V., Ohno, E., Packer, N.H., Palaima, E., Renfrow, M.B., Tajiri, M., Thomsson, K.A., Yagi, H., Yu, S.-Y., Taniguchi, N.: Comparison of methods for profiling O-glycosylation. Mol. Cell. Proteomics 9, 719–727 (2010)CrossRef
    6.Műthing, J., Distler, U.: Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom. Rev. 29, 425–479 (2010)
    7.Sullards, M.C., Liu, Y., Chen, Y., Merrill, J.: Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811, 838–853 (2011)CrossRef
    8.Doohan, R.A., Hayes, C.A., Harhen, B., Karlsson, N.G.: Negative ion CID fragmentation of O-linked oligosaccharide aldoses—charge induced and charge remote fragmentation. J. Am. Soc. Mass Spectrom. 22, 1052–1062 (2011)CrossRef
    9.Zamfir, A., Serb, A., Vukelić, Ž., Flangea, C., Schiopu, C., Fabris, D., Kalanj-Bognar, S., Capitan, F., Sisu, E.: Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 22, 2145–2159 (2011)CrossRef
    10.Mlinac, K., Fabris, D., Vukelić, Ž., Rožman, M., Heffer, M., Kalanj Bognar, S.: Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr. Res. 382, 1–8 (2013)CrossRef
    11.Barber, M., Bordoli, R.S., Sedgwick, R.D., Vickerman, J.C.: Fast atom bombardment mass spectrometry (FAB) negative-ion spectra of some simple monosaccharides. J. Chem. Soc. Faraday Trans. 1 78, 1291–1296 (1982)CrossRef
    12.Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRef
    13.Prome, J.-C., Aurelle, H., Prome, D., Savagnac, A.: Gas phase glycosidic cleavage of oxynions from alkyl glycosides. Org. Mass Spectrom. 22, 6–12 (1987)CrossRef
    14.Mulroney, B., Peel, J.B., Traeger, J.C.: Theoretical study of deprotonated glucopyranosyl disaccharide fragmentation. J. Mass Spectrom. 34, 856–871 (1999)CrossRef
    15.Saad, O.M., Leary, J.A.: Delineating mechanisms of dissociation for isomeric heparin disaccharides using isotope labeling and ion trap tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1274–1286 (2004)CrossRef
    16.Rožman, M., Fabris, D., Mrla, T., Vukelić, Ž.: Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr. Res. 400, 1–8 (2014)CrossRef
    17.Fahy, E., Sud, M., Cotter, D., Subramaniam, S.: LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007)CrossRef
    18.Souady, J., Dadimov, D., Kirsch, S., Bindila, L., Peter-Katalinić, J., Vakhrushev, S.Y.: Software utilities for the interpretation of mass spectrometric data of glycoconjugates: application to glycosphingolipids of human serum. Rapid Commun. Mass Spectrom. 24, 1039–1048 (2010)CrossRef
    19.Rožman, M.: Modelling of the gas-phase phosphate group loss and rearrangement in phosphorylated peptides. J. Mass Spectrom. 46, 949–955 (2011)CrossRef
    20.Salpin, J.-Y., Tortajada, J.: Gas-phase acidity of D-glucose. A density functional theory study. J. Mass Spectrom. 39, 930–941 (2004)CrossRef
    21.Csonka, G.I., French, A.D., Johnson, G.P., Stortz, C.A.: Evaluation of density functionals and basis sets for carbohydrates. J. Chem. Theory Comput. 5, 679–692 (2009)CrossRef
    22.Baboul, A.G., Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110, 7650–7657 (1999)CrossRef
    23.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Gaussian Inc, Wallingford (2013)
    24.Drahos, L., Vékey, K.: MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics, and mathematical descriptions. J. Mass Spectrom. 36, 237–263 (2001)CrossRef
  • 作者单位:Marko Rožman (1)

    1. Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10002, Zagreb, Croatia
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700