Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer
详细信息    查看全文
  • 作者:Jodie M Fleming (1) (2)
    Erika Ginsburg (2)
    Shannon D Oliver (1)
    Paul Goldsmith (3)
    Barbara K Vonderhaar (2)
  • 关键词:Hornerin ; S100 protein ; Mammary gland ; Breast cancer ; Apoptosis ; Protein fragmentation
  • 刊名:BMC Cancer
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:878KB
  • 参考文献:1. Carafoli E: Calcium signaling: a tale for all seasons. / Proc Natl Acad Sci USA 2002,99(3):1115-122. CrossRef
    2. Leclerc E, Heizmann CW: The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. / Front Biosci (Schol Ed) 2011, 3:1232-262. CrossRef
    3. Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: dynamics, homeostasis and remodelling. / Nat Rev Mol Cell Biol 2003,4(7):517-29. CrossRef
    4. Heizmann CW, Ackermann GE, Galichet A: Pathologies involving the S100 proteins and RAGE. / Subcell Biochem 2007, 45:93-38. CrossRef
    5. McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ: The role of S100 genes in breast cancer progression. / Tumour Biol 2011,32(3):441-50. CrossRef
    6. Barraclough R: Calcium-binding protein S100A4 in health and disease. / Biochim Biophys Acta 1998,1448(2):190-99. CrossRef
    7. Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC, Watson PH: Psoriasin interacts with Jab1 and influences breast cancer progression. / Cancer Res 2003,63(8):1954-961.
    8. Emberley ED, Murphy LC, Watson PH: S100A7 and the progression of breast cancer. / Breast Cancer Res 2004,6(4):153-59. CrossRef
    9. Liu D, Rudland PS, Sibson DR, Platt-Higgins A, Barraclough R: Expression of calcium-binding protein S100A2 in breast lesions. / Br J Cancer 2000,83(11):1473-479. CrossRef
    10. Feng G, Xu X, Youssef EM, Lotan R: Diminished expression of S100A2, a putative tumor suppressor, at early stage of human lung carcinogenesis. / Cancer Res 2001,61(21):7999-004.
    11. Fleming JM, Miller TC, Quinones M, Xiao Z, Xu X, Meyer MJ, Ginsburg E, Veenstra TD, Vonderhaar BK: The normal breast microenvironment of premenopausal women differentially influences the behavior of breast cancer cells in vitro and in vivo. / BMC Med 2010, 8:27. CrossRef
    12. Makino T, Takaishi M, Morohashi M, Huh NH: Hornerin, a novel profilaggrin-like protein and differentiation-specific marker isolated from mouse skin. / J Biol Chem 2001,276(50):47445-7452. CrossRef
    13. Wu Z, Meyer-Hoffert U, Reithmayer K, Paus R, Hansmann B, He Y, Bartels J, Glaser R, Harder J, Schroder JM: Highly complex peptide aggregates of the S100 fused-type protein hornerin are present in human skin. / J Invest Dermatol 2009,129(6):1446-458. CrossRef
    14. Henry J, Hsu CY, Haftek M, Nachat R, de Koning HD, Gardinal-Galera I, Hitomi K, Balica S, Jean-Decoster C, Schmitt AM, / et al.: Hornerin is a component of the epidermal cornified cell envelopes. / FASEB J 2011,25(5):1567-576. CrossRef
    15. Takaishi M, Makino T, Morohashi M, Huh NH: Identification of human hornerin and its expression in regenerating and psoriatic skin. / J Biol Chem 2005,280(6):4696-703. CrossRef
    16. Hovey RC, Trott JF, Vonderhaar BK: Establishing a framework for the functional mammary gland: from endocrinology to morphology. / J Mammary Gland Biol Neoplasia 2002,7(1):17-8. CrossRef
    17. Panchal H, Wansbury O, Parry S, Ashworth A, Howard B: Neuregulin3 alters cell fate in the epidermis and mammary gland. / BMC Dev Biol 2007, 7:105. CrossRef
    18. Hislop NR, Caddy J, Ting SB, Auden A, Vasudevan S, King SL, Lindeman GJ, Visvader JE, Cunningham JM, Jane SM: Grhl3 and Lmo4 play coordinate roles in epidermal migration. / Dev Biol 2008,321(1):263-72. CrossRef
    19. Singh RR, Barnes CJ, Talukder AH, Fuqua SA, Kumar R: Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. / Cancer Res 2005,65(22):10594-0601. CrossRef
    20. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR: Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. / Breast Cancer Res Treat 2001,65(2):101-10. CrossRef
    21. Fleming JM, Long EL, Ginsburg E, Gerscovich D, Meltzer PS, Vonderhaar BK: Interlobular and intralobular mammary stroma: genotype may not reflect phenotype. / BMC Cell Biol 2008, 9:46. CrossRef
    22. Staubach S, Razawi H, Hanisch FG: Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. / Proteomics 2009,9(10):2820-835. CrossRef
    23. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ: ExoCarta 2012: database of exosomal proteins, RNA and lipids. / Nucleic Acids Res 2012,40(Database issue):D1241-D1244. CrossRef
    24. Mariner JM, McMahon JB, O'Keefe BR, Nagashima K, Boyd MR: The HIV-inactivating protein, cyanovirin-N, does not block gp120-mediated virus-to-cell binding. / Biochem Biophys Res Commun 1998,248(3):841-45. CrossRef
    25. Belanger JM, Raviv Y, Viard M, de la Cruz JM, Nagashima K, Blumenthal R: Characterization of the effects of aryl-azido compounds and UVA irradiation on the viral proteins and infectivity of human immunodeficiency virus type 1. / Photochem Photobiol 2010,86(5):1099-108. CrossRef
    26. Ahn YH, Lee JY, Kim YS, Ko JH, Yoo JS: Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA-enrichment and SISCAPA with MRM mass spectrometry. / J Proteome Res 2009,8(9):4216-224. CrossRef
    27. Dumont D, Noben JP, Raus J, Stinissen P, Robben J: Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. / Proteomics 2004,4(7):2117-124. CrossRef
    28. Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao X, Wu WW, Shen RF, Daniels MP, Levine SJ: Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. / Biochem Biophys Res Commun 2009,378(3):433-38. CrossRef
    29. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD: Proteomic and immunologic analyses of brain tumor exosomes. / FASEB J 2009,23(5):1541-557. CrossRef
    30. Monks J, Henson PM: Differentiation of the mammary epithelial cell during involution: implications for breast cancer. / J Mammary Gland Biol Neoplasia 2009,14(2):159-70. CrossRef
    31. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. / Cancer Res 1990,50(18):6075-086.
    32. Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR: MCF10AT: a model for the evolution of cancer from proliferative breast disease. / Am J Pathol 1996,148(1):313-19.
    33. Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, Heppner GH: Xenograft model of progressive human proliferative breast disease. / J Natl Cancer Inst 1993,85(21):1725-732. CrossRef
    34. Basolo F, Elliott J, Tait L, Chen XQ, Maloney T, Russo IH, Pauley R, Momiki S, Caamano J, Klein-Szanto AJ, / et al.: Transformation of human breast epithelial cells by c-Ha-ras oncogene. / Mol Carcinog 1991,4(1):25-5. CrossRef
    35. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, / et al.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. / Cancer Cell 2006,10(6):515-27. CrossRef
    36. Jin Q, Chen H, Luo A, Ding F, Liu Z: S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE). / PLoS One 2011,6(4):e19375. CrossRef
    37. Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, McNeill KD, Hashemi M, Kerkhoff C, Los M: S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. / Cell Res 2010,20(3):314-31. CrossRef
    38. Lefevre CM, Sharp JA, Nicholas KR: Evolution of lactation: ancient origin and extreme adaptations of the lactation system. / Annu Rev Genomics Hum Genet 2010, 11:219-38. CrossRef
    39. McKeague AL, Wilson DJ, Nelson J: Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines. / Br J Cancer 2003,88(1):125-31. CrossRef
    40. Petersson S, Bylander A, Yhr M, Enerback C: S100A7 (Psoriasin), highly expressed in ductal carcinoma in situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells. / BMC Cancer 2007, 7:205. CrossRef
    41. Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S, Mulligan K, Emberley ED, Lioe TF, Morrison PJ, / et al.: BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. / Cancer Res 2005,65(22):10265-0272. CrossRef
    42. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, / et al.: Large-scale mapping of human protein-protein interactions by mass spectrometry. / Mol Syst Biol 2007, 3:89. CrossRef
    43. Zhou XZ: PinX1: a sought-after major tumor suppressor at human chromosome 8p23. / Oncotarget 2011,2(10):810-19.
    44. van Niel G, Porto-Carreiro I, Simoes S, Raposo G: Exosomes: a common pathway for a specialized function. / J Biochem 2006,140(1):13-1. CrossRef
    45. Srikrishna G, Freeze HH: Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. / Neoplasia 2009,11(7):615-28.
    46. Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. / Breast Cancer Res Treat 2004,83(3):249-89. CrossRef
    47. Fillatre J, Delacour D, Van Hove L, Bagarre T, Houssin N, Soulika M, Veitia RA, Moreau J: Dynamics of the subcellular localization of RalBP1/RLIP through the cell cycle: the role of targeting signals and of protein-protein interactions. / FASEB J 2012,:.
    48. Mueller A, Bachi T, Hochli M, Schafer BW, Heizmann CW: Subcellular distribution of S100 proteins in tumor cells and their relocation in response to calcium activation. / Histochem Cell Biol 1999,111(6):453-59. CrossRef
    49. Cross SS, Hamdy FC, Deloulme JC, Rehman I: Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. / Histopathology 2005,46(3):256-69. CrossRef
    50. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/12/266/prepub
  • 作者单位:Jodie M Fleming (1) (2)
    Erika Ginsburg (2)
    Shannon D Oliver (1)
    Paul Goldsmith (3)
    Barbara K Vonderhaar (2)

    1. Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Rm 2247, Durham, NC, 27707, USA
    2. Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, Bethesda, MD, 20892-4254, USA
    3. Antibody Production and Purification Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
  • ISSN:1471-2407
文摘
Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700