Characterization of Gold-Sputtered Zinc Oxide Nanorods—a Potential Hybrid Material
详细信息    查看全文
  • 作者:Veeradasan Perumal ; Uda Hashim ; Subash C. B. Gopinath
  • 关键词:Zinc oxide ; Gold ; Nanorods ; Dopant ; Impedance ; Nanostructure
  • 刊名:Nanoscale Research Letters
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:961 KB
  • 参考文献:1.Gopinath SCB, Awazu K, Fons P et al (2009) A sensitive multilayered structure suitable for biosensing on the BioDVD platform. Anal Chem 81:4963–4970. doi:10.​1021/​ac802757z CrossRef
    2.Shima T, Gopinath SCB, Fujimaki M, Awazu K (2013) Detection and two-dimensional imaging of Escherichia coli attached to an optical disk. Jpn J Appl Phys 52:108004. doi:10.​7567/​JJAP.​52.​108004 CrossRef
    3.Perumal V, Hashim U, Gopinath SCB et al (2015) A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron 78:14–22. doi:10.​1016/​j.​bios.​2015.​10.​083 CrossRef
    4.Fujimaki M, Nomura K, Sato K et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732–15740. doi:10.​1364/​OE.​18.​015732 CrossRef
    5.Gopinath SCB, Awazu K, Fujimaki M et al (2008) Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal Chem 80:6602–6609. doi:10.​1021/​ac800767s CrossRef
    6.Gopinath SCB, Awazu K, Fujimaki M (2012) Waveguide-mode sensors as aptasensors. Sensors 12:2136–2151. doi:10.​3390/​s120202136 CrossRef
    7.Jiang R, Li B, Fang C, Wang J (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26:5274–5309. doi:10.​1002/​adma.​201400203 CrossRef
    8.Wang FH, Yang CF, Lee YH (2014) Deposition of F-doped ZnO transparent thin films using ZnF2-doped ZnO target under different sputtering substrate temperatures. Nanoscale Res Lett 9:1–7. doi:10.​1186/​1556-276X-9-97 CrossRef
    9.Dasan YK, Bhat AH, Faiz A (2015) Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber. AIP Conf Proc 1669:76. doi:10.​1063/​1.​4919196
    10.Perumal V, Hashim U (2013) Advances in biosensors: principle, architecture and applications. J Appl Biomed 11:1–34. doi:10.​1016/​j.​jab.​2013.​02.​001 CrossRef
    11.Shi X, Gu W, Li B et al (2013) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22. doi:10.​1007/​s00604-013-1069-5 CrossRef
    12.Balakrishnan SR, Hashim U, Gopinath SCB et al (2015) A point-of-care immunosensor for human chorionic gonadotropin in clinical urine samples using a cuneated polysilicon nanogap lab-on-chip. PLoS One 10:e0137891. doi:10.​1371/​journal.​pone.​0137891 CrossRef
    13.Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17–24. doi:10.​1038/​asiamat.​2010.​137 CrossRef
    14.Perumal V, Hashim U, Gopinath SCB et al (2015) “Spotted nanoflowers”: gold-seeded zinc oxide nanohybrid for selective bio-capture. Sci Rep 5:12231. doi:10.​1038/​srep12231 CrossRef
    15.Haarindraprasad R, Hashim U, Gopinath SCB et al (2015) Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications. PLoS One 10:1–20. doi:10.​1371/​journal.​pone.​0132755 CrossRef
    16.Mishra YK, Modi G, Cretu V et al (2015) Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl Mater Interfaces 7:14303–14316. doi:10.​1021/​acsami.​5b02816 CrossRef
    17.Kashif M, Usman Ali SM, Ali ME et al (2012) Morphological, optical, and Raman characteristics of ZnO nanoflakes prepared via a sol–gel method. Phys Status Solidi 209:143–147. doi:10.​1002/​pssa.​201127357 CrossRef
    18.Humayun Q, Kashif M, Hashim U, Qurashi A (2014) Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors. Nanoscale Res Lett 9:29. doi:10.​1186/​1556-276X-9-29 CrossRef
    19.Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nanotoday 2:18–29CrossRef
    20.Su L, Qin N (2015) A facile method for fabricating Au-nanoparticles-decorated ZnO nanorods with greatly enhanced near-band-edge emission. Ceram Int 41:2673–2679. doi:10.​1016/​j.​ceramint.​2014.​10.​081 CrossRef
    21.Yuan YJ, Gopinath SCB, Kumar PKR (2011) Regeneration of commercial Biacore chips to analyze biomolecular interactions. Opt Eng 50:034402–1–6. doi:10.​1117/​1.​3554392 CrossRef
    22.Gopinath SCB, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51:115–123. doi:10.​1016/​j.​bios.​2013.​07.​037 CrossRef
    23.Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18. doi:10.​1016/​j.​aca.​2011.​12.​008 CrossRef
    24.Foo KL, Hashim U, Muhammad K, Voon CH (2014) Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett 9:1–10CrossRef
    25.Foo KL, Kashif M, Hashim U (2013) Study of zinc oxide films on SiO2/Si substrate by sol-gel spin coating method for pH measurement. Appl Mech Mater 284–287:347–351. doi:10.​4028/​www.​scientific.​net/​AMM.​284-287.​347 CrossRef
    26.Balakrishnan SR, Hashim U, Letchumanan GR et al (2014) Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensors Actuators A Phys 220:101–111. doi:10.​1016/​j.​sna.​2014.​09.​027 CrossRef
    27.Balakrishnan SR, Hashim U, Gopinath SCB, et al. (2015) Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens Bioelectron. doi: 10.​1016/​j.​bios.​2015.​10.​075
    28.Perumal V, Prasad RH, Hashim U (2013) pH measurement using in house fabricated interdigitated capacitive transducer. RSM2013 Proc. 2013, Langkawi, Malaysia, pp 33–36
    29.Wu J-J, Tseng C-H (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B Environ 66:51–57. doi:10.​1016/​j.​apcatb.​2006.​02.​013 CrossRef
    30.Mishra YK, Chakravadhanula VSK, Hrkac V et al (2012) Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability. J Appl Phys 112:064308–1–5. doi:10.​1063/​1.​4752469
    31.Strunk J, Kähler K, Xia X et al (2009) Au/ZnO as catalyst for methanol synthesis: the role of oxygen vacancies. Appl Catal A Gen 359:121–128. doi:10.​1016/​j.​apcata.​2009.​02.​030 CrossRef
    32.Tan ST, Chen BJ, Sun XW et al (2005) Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J Appl Phys 98:013505–1–5. doi:10.​1063/​1.​1940137
    33.Guo J, Zhang J, Zhu M et al (2014) Sensors and actuators B: chemical high-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators B Chem 199:339–345CrossRef
    34.Kahraman S, Çakmak HM, Çetinkaya S et al (2013) Characteristics of ZnO thin films doped by various elements. J Cryst Growth 363:86–92. doi:10.​1016/​j.​jcrysgro.​2012.​10.​018 CrossRef
    35.Wang X, Zhang X, Cheng W et al (2014) Facile synthesis and optical properties of polymer-laced ZnO-Au hybrid nanoparticles. Nanoscale Res Lett 9:1–7. doi:10.​1186/​1556-276X-9-109 CrossRef
    36.Mishra YK, Mohapatra S, Singhal R et al (2008) Au-ZnO: a tunable localized surface plasmonic nanocomposite. Appl Phys Lett 92:043107–1–3. doi:10.​1063/​1.​2838302 CrossRef
    37.Tarwal NL, Devan RS, Ma YR et al (2012) Spray deposited localized surface plasmonic Au-ZnO nanocomposites for solar cell application. Electrochim Acta 72:32–39. doi:10.​1016/​j.​electacta.​2012.​03.​135 CrossRef
    38.Gogurla N, Sinha AK, Santra S et al (2014) Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep 4:6483. doi:10.​1038/​srep06483 CrossRef
    39.Tarwal NL, Rajgure a V, Inamdar a I et al (2013) Growth of multifunctional ZnO thin films by spray pyrolysis technique. Sensors Actuators A Phys 199:67–73. doi:10.​1016/​j.​sna.​2013.​05.​003 CrossRef
    40.Kashif M, Ali ME, Ali SMU, Hashim U (2013) Sol–gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications. Ceram Int 39:6461–6466. doi:10.​1016/​j.​ceramint.​2013.​01.​075 CrossRef
    41.Shinde SS, Korade a P, Bhosale CH, Rajpure KY (2013) Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J Alloys Compd 551:688–693. doi:10.​1016/​j.​jallcom.​2012.​11.​057 CrossRef
    42.Xu Y, Yao B, Li YF et al (2014) Chemical states of gold doped in ZnO films and its effect on electrical and optical properties. J Alloys Compd 585:479–484. doi:10.​1016/​j.​jallcom.​2013.​09.​199 CrossRef
    43.Hosseini ZS, Mortezaali A, Iraji A, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloys Compd 628:222–229CrossRef
    44.Mohapatra S, Mishra YK, Avasthi DK et al (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105–1–3. doi:10.​1063/​1.​2894187 CrossRef
    45.Singh S, Zack J, Kumar D et al (2010) DNA hybridization on silicon nanowires. Thin Solid Films 519:1151–1155. doi:10.​1016/​j.​tsf.​2010.​08.​060 CrossRef
    46.Wustoni S, Hideshima S, Kuroiwa S, Nakanishi T (2014) Sensitive electrical detection of human prion proteins using field effect transistor biosensor with dual-ligand binding amplification. Biosens Bioelectron 1–7. doi: 10.​1016/​j.​bios.​2014.​08.​028
    47.Jin X, Götz M, Wille S et al (2013) A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25:1342–1347. doi:10.​1002/​adma.​201203849 CrossRef
    48.Fabbri F, Villani M, Catellani A et al (2014) Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci Rep 4:5158. doi:10.​1038/​srep05158
    49.Lai CW, An J, Ong HC (2005) Surface-plasmon-mediated emission from metal-capped ZnO thin films. Appl Phys Lett 86:251105–1–3. doi:10.​1063/​1.​1954883
    50.Lin J-H, Patil R a, Devan RS et al (2014) Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Sci Rep 4:6967. doi:10.​1038/​srep06967 CrossRef
    51.Shao D, Sun H, Yu M et al (2012) Enhanced ultraviolet emission from poly(vinyl alcohol) ZnO nanoparticles using a SiO2-Au core/shell structure. Nano Lett 12:5840–5844CrossRef
    52.Park S, Mun Y, An S et al (2014) Enhanced photoluminescence of Au-functionalized ZnO nanorods annealed in a hydrogen atmosphere. J Lumin 147:5–8. doi:10.​1016/​j.​jlumin.​2013.​10.​044 CrossRef
    53.Khoa NT, Kim SW, Yoo D-H et al (2015) Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl Mater Interfaces 7:3524–3531. doi:10.​1021/​acsami.​5b00152
    54.Lin HY, Cheng CL, Chou YY et al (2006) Enhancement of band gap emission stimulated by defect loss. Opt Express 14:2372–2379. doi:10.​1364/​OE.​14.​002372 CrossRef
    55.Rouhi J, Mamat MH, Ooi CHR et al (2015) High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructure nanocone photoanodes. PLoS One 10:1–14. doi:10.​1371/​journal.​pone.​0123433 CrossRef
    56.Cheng CW, Sie EJ, Liu B et al (2010) Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl Phys Lett 96:3–5. doi:10.​1063/​1.​3323091
    57.Saif AA, Poopalan P (2011) Correlation between the chemical composition and the conduction mechanism of barium strontium titanate thin films. J Alloys Compd 509:7210–7215. doi:10.​1016/​j.​jallcom.​2011.​04.​068 CrossRef
    58.Srivastava S, Srivastava AK, Singh P et al (2015) Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric investigation. J Alloys Compd 644:597–601. doi:10.​1016/​j.​jallcom.​2015.​04.​220 CrossRef
    59.Kashif M, Ali ME, Ali SMU et al (2013) Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods. Nanoscale Res Lett 8:1–9. doi:10.​1186/​1556-276X-8-68 CrossRef
    60.Alaeddin AS, Poopalan P (2010) Impedance/modulus analysis of sol–gel Ba_xSr_1-xTiO_3 thin films. J Korean Phys Soc 57:1449–1455. doi:10.​3938/​jkps.​57.​1449 CrossRef
    61.Wang X, Kong X, Yu Y, Zhang H (2007) Synthesis and characterization of water-soluble and bifunctional ZnO-Au nanocomposites. J Phys Chem C 111:3836–3841CrossRef
    62.Shan G, Zhong M, Wang S et al (2008) The synthesis and optical properties of the heterostructured ZnO/Au nanocomposites. J Colloid Interface Sci 326:392–395. doi:10.​1016/​j.​jcis.​2008.​06.​027 CrossRef
  • 作者单位:Veeradasan Perumal (1)
    Uda Hashim (1)
    Subash C. B. Gopinath (1) (2)
    Haarindraprasad Rajintra Prasad (1)
    Liu Wei-Wen (1)
    S. R. Balakrishnan (1)
    Thivina Vijayakumar (1)
    Ruslinda Abdul Rahim (1)

    1. Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
    2. School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5–10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics. Keywords Zinc oxide Gold Nanorods Dopant Impedance Nanostructure

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700