Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution
详细信息    查看全文
  • 作者:Dani?l P Melters (1) (2)
    Keith R Bradnam (1)
    Hugh A Young (3)
    Natalie Telis (1) (2)
    Michael R May (4)
    J Graham Ruby (5)
    Robert Sebra (6)
    Paul Peluso (6)
    John Eid (6)
    David Rank (6)
    José Fernando Garcia (7)
    Joseph L DeRisi (5) (8)
    Timothy Smith (9)
    Christian Tobias (3)
    Jeffrey Ross-Ibarra (10)
    Ian Korf (1)
    Simon WL Chan (2) (8)
  • 刊名:Genome Biology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1,011 KB
  • 参考文献:1. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M: A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. / Genes Dev 1995, 9:573-86. CrossRef
    2. Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T: Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. / Genome Res 2010, 20:1219-228. CrossRef
    3. Talbert PB, Bryson TD, Henikoff S: Adaptive evolution of centromere proteins in plants and animals. / J Biol 2004, 3:18. CrossRef
    4. Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. / Science 2001, 293:1098-102. CrossRef
    5. Meraldi P, McAinsh AD, Rheinbay E, Sorger PK: Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. / Genome Biol 2006, 7:R23. CrossRef
    6. McAinsh AD, Tytell JD, Sorger PK: Structure, function, and regulation of budding yeast kinetochores. / Annu Rev Cell Dev Biol 2003, 19:519-39. CrossRef
    7. Birchler JA, Gao Z, Han F: A tale of two centromeres--diversity of structure but conservation of function in plants and animals. / Funct Integr Genomics 2009, 9:7-3. CrossRef
    8. Wang G, Zhang X, Jin W: An overview of plant centromeres. / J Genet Genomics 2009, 36:529-37. CrossRef
    9. Willard HF: Centromeres of mammalian chromosomes. / Trends Genet 1990, 6:410-16. CrossRef
    10. Waye JS, Durfy SJ, Pinkel D, Kenwrick S, Patterson M, Davies KE, Willard HF: Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. / Genomics 1987, 1:43-1. CrossRef
    11. Rudd MK, Wray GA, Willard HF: The evolutionary dynamics of alpha-satellite. / Genome Res 2006, 16:88-6. CrossRef
    12. Amor DJ, Choo KH: Neocentromeres: role in human disease, evolution, and centromere study. / Am J Hum Genet 2002, 71:695-14. CrossRef
    13. Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR: Stable barley chromosomes without centromeric repeats. / Proc Natl Acad Sci USA 2005, 102:9842-847. CrossRef
    14. Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA: Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. / Proc Natl Acad Sci USA 2006, 103:4186-191. CrossRef
    15. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G, / et al.: Genome sequence, comparative analysis, and population genetics of the domestic horse. / Science 2009, 326:865-67. CrossRef
    16. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, Mitreva M, Cook L, Delehaunty KD, Fronick C, Schmidt H, Fulton LA, Fulton RS, Nelson JO, Magrini V, Pohl C, Graves TA, Markovic C, Cree A, Dinh HH, Hume J, Kovar CL, Fowler GR, Lunter G, Meader S, Heger A, / et al.: Comparative and demographic analysis of orang-utan genomes. / Nature 2011, 469:529-33. CrossRef
    17. Marshall OJ, Chueh AC, Wong LH, Choo KH: Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. / Am J Hum Genet 2008, 82:261-82. CrossRef
    18. Neumann P, Navrátilová A, Schroeder-Reiter E, Koblí?ková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J: Stretching the rules: monocentric chromosomes with multiple centromere domains. / PLoS Genet 2012, 8:e1002777. CrossRef
    19. Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J: Repeatless and repeat-based centromeres in potato: implications for centromere evolution. / Plant Cell 2012, 24:3559-574. CrossRef
    20. Dernburg AF: Here, there, and everywhere: kinetochore function on holocentric chromosomes. / J Cell Biol 2001, 153:F33-F38. CrossRef
    21. Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T, Gaydos L, Barron F, Maddox P, Essex A, Monen J, Ercan S, Lieb JD, Oegema K, Strome S, Desai A: An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. / Nature 2012, 484:534-37. CrossRef
    22. Elder JF, Turner BJ: Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. / Proc Natl Acad Sci USA 1994, 91:994-98. CrossRef
    23. Palomeque T, Lorite P: Satellite DNA in insects: a review. / Heredity (Edinb) 2008, 100:564-73. CrossRef
    24. Masumoto H, Nakano M, Ohzeki J: The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. / Chromosome Res 2004, 12:543-56. CrossRef
    25. Bensasson D, Zarowiecki M, Burt A, Koufopanou V: Rapid evolution of yeast centromeres in the absence of drive. / Genetics 2008, 178:2161-167. CrossRef
    26. Bensasson D: Evidence for a high mutation rate at rapidly evolving yeast centromeres. / BMC Evol Biol 2011, 11:211. CrossRef
    27. Plohl M, Luchetti A, Mestrovi? N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. / Gene 2008, 409:72-2. CrossRef
    28. Gaillard C, Doly J, Cortadas J, Bernardi G: The primary structure of bovine satellite 1.715. / Nucleic Acids Res 1981, 9:6069-082. CrossRef
    29. P?ucienniczak A, Skowroński J, Jaworski J: Nucleotide sequence of bovine 1.715 satellite DNA and its relation to other bovine satellite sequences. / J Mol Biol 1982, 158:293-04. CrossRef
    30. Taparowsky EJ, Gerbi SA: Structure of 1.71 lb gm/cm(3) bovine satellite DNA: evolutionary relationship to satellite I. / Nucleic Acids Res 1982, 10:5503-515. CrossRef
    31. Fishman L, Saunders A: Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. / Science 2008, 322:1559-562. CrossRef
    32. BLASTn [http://blast.ncbi.nlm.nih.gov]
    33. Alkan C, Cardone MF, Catacchio CR, Antonacci F, O'Brien SJ, Ryder OA, Purgato S, Zoli M, Della Valle G, Eichler EE, Ventura M: Genome-wide characterization of centromeric satellites from multiple mammalian genomes. / Genome Res 2011, 21:137-45. CrossRef
    34. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Mar?ais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. / Genome Biol 2009, 10:R42. CrossRef
    35. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, / et al.: The B73 maize genome: complexity, diversity, and dynamics. / Science 2009, 326:1112-115. CrossRef
    36. Ananiev EV, Phillips RL, Rines HW: Complex structure of knobs and centromeric regions in maize chromosomes. / Tsitol Genet 2000, 34:11-5.
    37. Dawe RK, Bennetzen JL, Hake S: / Maize Centromeres and Knobs (neocentromeres) Handbook of Maize. New York: Springer; 2009:239-50. CrossRef
    38. Chia JM, Song C, Bradbury P, Costich D, de Leon N, Doebley JC, Elshire RJ, Gaunt BS, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyh?j?rvi T, Rong T, Shekhon RS, Sun Q, Tenaillon M, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S, Ross-Ibarra J, McMullen M, Buckler ES, Zhang G, Xu Y, Ware D: Capturing extant variation from a genome in flux: maize HapMap II. / Nat Genet 2012, 44:803-07. CrossRef
    39. Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O'Neill MJ, O'Neill RJ: A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. / Chromosoma 2009, 118:113-25. CrossRef
    40. Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H: Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. / DNA Res 2002, 9:117-21. CrossRef
    41. Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. / Proc Natl Acad Sci USA 2005, 102:11793-1798. CrossRef
    42. Horvath JE, Willard HF: Primate comparative genomics: lemur biology and evolution. / Trends Genet 2007, 23:173-82. CrossRef
    43. Lee HR, Hayden KE, Willard HF: Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome. / Genome Biol Evol 2011, 3:1136-149. CrossRef
    44. Shelby RD, Vafa O, Sullivan KF: Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. / J Cell Biol 1997, 136:501-13. CrossRef
    45. Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA: Molecular and chromosomal evidence for allopolyploidy in soybean. / Plant Physiol 2009, 151:1167-174. CrossRef
    46. Tek AL, Kashihara K, Murata M, Nagaki K: Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. / Chromosome Res 2010, 18:337-47. CrossRef
    47. Blomberg SP, Garland T, Ives AR: Testing for phylogenetic signal in comparative data: behavioral traits are more labile. / Evolution 2003, 57:717-45.
    48. Melters DP, Paliulis L, Korf IF, Chan SW: Holocentric chromosomes: convergent evolution, meiotic adaptations and genomic analysis. / Chromosome Research 2012, 20:579-93. CrossRef
    49. Warburton PE, Waye JS, Willard HF: Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. / Mol Cell Biol 1993, 13:6520-529.
    50. Benson G: Tandem repeats finder: a program to analyze DNA sequences. / Nucleic Acids Res 1999, 27:573-80. CrossRef
    51. Cellamare A, Catacchio CR, Alkan C, Giannuzzi G, Antonacci F, Cardone MF, Della Valle G, Malig M, Rocchi M, Eichler EE, Ventura M: New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. / Mol Biol Evol 2009, 26:1889-900. CrossRef
    52. Smith GP: Evolution of repeated DNA sequences by unequal crossover. / Science 1976, 191:528-35. CrossRef
    53. Ma J, Jackson SA: Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. / Genome Res 2006, 16:251-59. CrossRef
    54. Ma J, Bennetzen JL: Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. / Proc Natl Acad Sci USA 2006, 103:383-88. CrossRef
    55. Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T: Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. / Systematics Biodiversity 2007, 5:277-89. CrossRef
    56. Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing. / Hum Mol Genet 2010, 19:R227-R240. CrossRef
    57. Warburton PE, Haaf T, Gosden J, Lawson D, Willard HF: Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. / Genomics 1996, 33:220-28. CrossRef
    58. Swaminathan K, Varala K, Hudson M: Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. / BMC Genomics 2007, 8:132. CrossRef
    59. Hayden K, Willard H: Composition and organization of active centromere sequences in complex genomes. / BMC Genomics 2012, 13:324. CrossRef
    60. Navajas-Pérez R, Paterson AH: Patterns of tandem repetition in plant whole genome assemblies. / Mol Genet Genomics 2009, 281:579-90. CrossRef
    61. Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J: Sequencing of a rice centromere uncovers active genes. / Nat Genet 2004, 36:138-45. CrossRef
    62. Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M: Evolutionary formation of new centromeres in macaque. / Science 2007, 316:243-46. CrossRef
    63. Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE: Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. / J Cell Biol 2010, 190:177-85. CrossRef
    64. Pikaard C, Pontes O: Heterochromatin: condense or excise. / Nat Cell Biol 2007, 9:19-0. CrossRef
    65. Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK: Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. / Plant Cell 2002, 14:2825-836. CrossRef
    66. Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR: CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. / Chromosoma 2007, 116:275-83. CrossRef
    67. Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-I T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T: Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. / Genes Dev 2012, 26:705-13. CrossRef
    68. Sullivan BA, Karpen GH: Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. / Nat Struct Mol Biol 2004, 11:1076-083. CrossRef
    69. Zhang W, Lee H-R, Koo D-H, Jiang J: Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. / Plant Cell 2008, 20:25-4. CrossRef
    70. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H: Inactivation of a human kinetochore by specific targeting of chromatin modifiers. / Dev Cell 2008, 14:507-22. CrossRef
    71. Ohzeki JI, Bergmann JH, Kouprina N, Noskov VN, Nakano M, Kimura H, Earnshaw WC, Larionov V, Masumoto H: Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. / EMBO J 2012, 31:2391-402. CrossRef
    72. Topp CN, Zhong CX, Dawe RK: Centromere-encoded RNAs are integral components of the maize kinetochore. / Proc Natl Acad Sci USA 2004, 101:15986-5991. CrossRef
    73. O'Neill RJ, Carone DM: The role of ncRNA in centromeres: a lesson from marsupials. / Prog Mol Subcell Biol 2009, 48:77-01. CrossRef
    74. Du Y, Topp CN, Dawe RK: DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. / PLoS Genet 2010, 6:e1000835. CrossRef
    75. Gent JI, Schneider KL, Topp CN, Rodriguez C, Presting GG, Dawe RK: Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning. / Epigenetics Chromatin 2011, 4:3. CrossRef
    76. Han F, Gao Z, Birchler JA: Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. / Plant Cell 2009, 21:1929-939. CrossRef
    77. Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S: Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. / Curr Biol 2012, 22:658-67. CrossRef
    78. Mackinnon RN, Campbell LJ: The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. / Genet Res Int 2011, 2011:643628.
    79. Malik HS, Henikoff S: Major evolutionary transitions in centromere complexity. / Cell 2009, 138:1067-082. CrossRef
    80. Kawabe A, Charlesworth D: Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. / J Mol Evol 2007, 64:237-47. CrossRef
    81. Houseley J, Tollervey D: Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. / Nucleic Acids Res 2011, 39:8778-791. CrossRef
    82. Shi J, Wolf SE, Burke JM, Presting GG, Ross-Ibarra J, Dawe RK: Widespread gene conversion in centromere cores. / PLoS Biol 2010, 8:e1000327. CrossRef
    83. Birchler JA, Presting GG: Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. / Genes Dev 2012, 26:638-40. CrossRef
    84. Dover G: Molecular drive: a cohesive mode of species evolution. / Nature 1982, 299:111-17. CrossRef
    85. Elde NC, Roach KC, Yao MC, Malik HS: Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis. / J Mol Evol 2011, 72:510-20. CrossRef
    86. NCBI Trace Archive [http://www.ncbi.nlm.nih.gov/Traces/home/]
    87. DDBJ Sequence Read Archive [http://trace.ddbj.nig.ac.jp/DRASearch/]
    88. WU-BLAST [http://blast.wustl.edu/]
    89. PRICE [http://derisilab.ucsf.edu/software/price/index.html]
    90. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. / J Mol Biol 1990, 215:403-10.
    91. Coyne JA, Orr HA: Patterns of speciation in Drosophila. / Evolution 1989, 362-81.
    92. Fitzpatrick BM: Molecular correlates of reproductive isolation. / Evolution 2002, 56:191-98.
    93. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, / et al.: Database resources of the National Center for Biotechnology Information. / Nucleic Acids Res 2012, 40:D13-D25. CrossRef
    94. Paradis E, Claude J, Strimmer K: APE: Analyses of Phylogenetics and Evolution in R language. / Bioinformatics 2004, 20:289-90. CrossRef
    95. Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. / Bioinformatics 2006, 22:2971-972. CrossRef
    96. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigating evolutionary radiations. / Bioinformatics 2008, 24:129-31. CrossRef
    97. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO: Picante: R tools for integrating phylogenies and ecology. / Bioinformatics 2010, 26:1463-464. CrossRef
    98. 10kTrees WebServer [http://10ktrees.fas.harvard.edu/index.html]
    99. Bouchenak-Khelladi Y, Verboom GA, Savolainen V, Hodkinson TR: Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. / Bot J Linn Soc 2010, 162:543-57. CrossRef
    100. Chen D, Ronald PC: A rapid DNA minipreparation method suitable for AFLP and other PCR applications. / Plant Mol Biol Rep 1999, 17:53-7. CrossRef
    101. Zhang W, Friebe B, Gill BS, Jiang J: Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. / Chromosoma 2010, 119:553-63. CrossRef
    102. Korf Lab DataSet website [http://korflab.ucdavis.edu/Datasets/]
  • 作者单位:Dani?l P Melters (1) (2)
    Keith R Bradnam (1)
    Hugh A Young (3)
    Natalie Telis (1) (2)
    Michael R May (4)
    J Graham Ruby (5)
    Robert Sebra (6)
    Paul Peluso (6)
    John Eid (6)
    David Rank (6)
    José Fernando Garcia (7)
    Joseph L DeRisi (5) (8)
    Timothy Smith (9)
    Christian Tobias (3)
    Jeffrey Ross-Ibarra (10)
    Ian Korf (1)
    Simon WL Chan (2) (8)

    1. Department of Molecular and Cell Biology and Genome Center, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
    2. Department of Plant Biology, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
    3. Western Regional Research Center, USDA-ARS, 00 Buchanan St, Albany, CA, 94710, USA
    4. Department of Evolution and Ecology, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
    5. Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4th St, San Francisco, CA, 94158, USA
    6. Pacific Biosciences, 1380 Willow Rd, Menlo Park, CA, 94025, USA
    7. Department of Animal Production and Health, IAEA Collaborating Centre in Animal Genomics and Bioinformatics, Universidade Estadual Paulista, Rua Clóvis Pestana, 793-16050-680, Aracatuba, SP, Brazil
    8. Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD, 20815, USA
    9. US Meat Animal Research Center, USDA-ARS, State Spur 18D, Clay Center, NE, 68933, USA
    10. Department of Plant Sciences, Center for Population Biology, and Genome Center, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
  • ISSN:1465-6906
文摘
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700