A Direct Methodology for Small Punch Creep Test
详细信息    查看全文
  • 作者:T. Lee ; F. A. Ibupoto ; J. H. Lee ; B. J. Kim ; M. K. Kim
  • 关键词:Small punch creep test ; Creep life expectation ; Membrane stretching theory ; Monkman ; Grant model
  • 刊名:Experimental Mechanics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:56
  • 期:3
  • 页码:395-405
  • 全文大小:1,382 KB
  • 参考文献:1.Tanaka N, Wicks R (2010) power generation from coal. IEA. https://​www.​iea.​org/​publications/​freepublications​/​publication/​power_​generation_​from_​coal.​pdf . Accessed October 2010
    2.American Society for Test and Materials (2006) ASTM E139-11: standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials, book of standards, volume: 03.01
    3.Parker J, James J (1993) Disc-bend creep deformation behaviour of 0.5Cr0.5Mo0.25 V low alloy steel. 5th Int Conf Creep Fract Eng Mater Struct 651–660
    4.Manahan MP (1983) A new postirradiation mechanical behavior test—the miniaturized disk bend test. Nucl Technol 63:295–315
    5.Chakrabarty J (1970) A theory of stretch forming over hemispherical punch heads. Int J Mech Sci 12(4):315–325. doi:10.​1016/​0020-7403(70)90085-8 CrossRef
    6.Yang Z, Wang Z-W (2003) Relationship between strain and central deflection in small punch creep specimens. Int J Press Vessel Pip 80(6):397–404. doi:10.​1016/​S0308-0161(03)00069-3 CrossRef
    7.Chen J, Ma YW, Yoon KB (2010) Finite element study for determination of material’s creep parameters from small punch test. J Mech Sci Technol 24(6):1195–1201. doi:10.​1007/​s12206-010-0327-2 CrossRef
    8.Hyde TH, Stoyanov M, Sun W, Hyde CJ (2010) On the interpretation of results from small punch creep tests. J Strain Anal Eng Des 45(3):141–164. doi:10.​1243/​03093247JSA592 CrossRef
    9.CEN/WS (2005) Small punch test method for metallic materials part 1: a code of practice for small punch testing at elevated temperatures. Report No. CEN/WS 21
    10.Milička K, Dobeš F (2006) Small punch testing of P91 steel. Int J Press Vessel Pip 83:625–634. doi:10.​1016/​j.​ijpvp.​2006.​07.​009 CrossRef
    11.Li Y, Šturm R (2008) Determination of creep properties from small punch test. In: Proceedings of ASME pressure vessels and piping division conference, Chicago, Illinois, pp 739–750
    12.Alegre J, Cuesta I, Lorenzo M (2014) An extension of the monkman-grant model for the prediction of the creep rupture time using small punch tests. Exp Mech 54:1441–1451. doi:10.​1007/​s11340-014-9927-6 CrossRef
    13.Zhai PC, Chen G, Hashida T, Zhang QJ (2005) Evaluation on small punch creep test by finite element method. Key Eng Mater 297–300:377–383CrossRef
    14.Ling X, Zheng Y, You Y, Chen Y (2007) Creep damage in small punch creep specimens of type 304 stainless steel. Int J Press Vessel Pip 84:304–309. doi:10.​1016/​j.​ijpvp.​2006.​11.​003 CrossRef
    15.Evans M, Wang D (2008) The small punch creep test: some results from a numerical model. J Mater Sci 43:1825–1835. doi:10.​1007/​s10853-007-2388-x CrossRef
    16.Ma YW, Yoon KB, Shim S (2009) Assessment of power law creep constants of Gr91 steel using small punch creep tests. Fatigue Fract Eng Mater Struct 32:951–960. doi:10.​1111/​j.​1460-2695.​2009.​01394.​x CrossRef
    17.Park TG, Shim SH, Yoon KB, Jang CH (2002) A study on parameters measured during small punch creep testing. Trans Korean Soc Mech Eng A 26(1):171–178CrossRef
    18.Lee JH, Oh SG, Lee JG, Kim MK, Kim BJ, Jang TK, Lim BS (2014) Analysis of the small punch creep test results according to the normalized lifetime fraction. Met Mater Int 20(5):835–839CrossRef
    19.Dymáček P, Milička K (2009) Creep small-punch testing and its numerical simulations. Mater Sci and Eng A 510–511:444–449. doi:10.​1016/​j.​msea.​2008.​06.​053 CrossRef
    20.Im JW (1998) The effect of prior aging on the creep behavior of STS 316. Thesis, Sungkyunkwan University
    21.Kim BJ, Cho NH, Kim MK, Lim BS (2011) Effect of friction coefficient on the small punch creep behavior of AISI 316L stainless steel. Korean J Met Mater 49:515–521. doi:10.​3365/​KJMM.​2011.​49.​7.​515 CrossRef
    22.Monkman FC, Grant NJ (1956) An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. 56:593–620
    23.Chakrabarty J (2010) Applied plasticity, 2nd edn. Springer, New York
    24.Dunand D, Han B, Jansen A (1999) Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum. Metall Mater Trans A 30:829–838CrossRef
    25.Chakrabarty J (1998) Large deflections of a clamped circular plate pressed by a hemispherical-headed punch. Met Mater 4(4):680–684. doi:10.​1007/​BF03026380 CrossRef
    26.Mao X, Shoji T, Takahashi H (1987) Characterization of fracture behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis. J Test Eval 15:30–37CrossRef
  • 作者单位:T. Lee (1)
    F. A. Ibupoto (1)
    J. H. Lee (1)
    B. J. Kim (2)
    M. K. Kim (1)

    1. School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, South Korea
    2. School of Mechanical Engineering, Osan University, 45, Cheonghak-ro, Osan-si, Gyeonggi-do, 447-749, South Korea
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Theoretical and Applied Mechanics
    Characterization and Evaluation Materials
    Structural Mechanics
    Engineering Fluid Dynamics
    Engineering Design
  • 出版者:Springer Boston
  • ISSN:1741-2765
文摘
Small punch creep test (SPCT) has strong advantages in practice compared with traditional uniaxial creep test because a small sheet specimen (10 × 10 × 0.5 mm) can be obtained from in-service facilities or mechanical components without damage. In this paper, a novel investigation is proposed to directly interpret SPCT results in consideration of Chakrabarty’s membrane stretching theory, which features strain analysis on thin sheet material forced by large punch ball, and it is applied to derive equivalent strain and strain rate from SPCT results. Also, the Monkman-Grant model for evaluation of creep life is investigated by using equivalent strain and strain rate data obtained from the Chakrabarty’s membrane stretching theory. To validate this methodology, both uniaxial creep test and SPCT have been performed for STS 316L stainless steel at 650 °C. Displacement and time data in SPCT were converted into equivalent strain and strain rate. The Monkman-Grant models derived from two different creep tests show a great potential such that SPCT with the proposed methodology can be substituted for uniaxial creep test.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700