Foundations of analysis on superspace -1: Differential calculus
详细信息    查看全文
  • 作者:A. Yu. Khrennikov
  • 关键词:supersymmetry ; superspace ; Banach superalgebra ; superanalysis
  • 刊名:P-Adic Numbers, Ultrametric Analysis, and Applications
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:7
  • 期:2
  • 页码:96-110
  • 全文大小:579 KB
  • 参考文献:1.V. S. Vladimirov and I. V. Volovich, “Superanalysis I. Differential calculus,-Teor. Mat. Fiz. 59, 3-7 (1984).View Article MathSciNet
    2.V. S. Vladimirov and I.V. Volovich, “Superanalysis II. Integral calculus,-Teor. Mat. Fiz. 60, 169-98 (1984).View Article MathSciNet
    3.S. Albeverio, R. Cianci and A. Yu. Khrennikov, -em class="EmphasisTypeItalic">p-Adic valued quantization,-p-Adic Numbers Ultrametric Anal. Appl. 1N(2), 91-04 (2009).View Article MATH MathSciNet
    4.B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adicmathematical physics,-p-Adic Numbers Ultrametric Anal. Appl. 1(1), 1-7 (2009).View Article MATH MathSciNet
    5.B. Dragovich, “Some p-adic aspects of superanalysis,-Proc. Int. Workshop Supersymmetry and Quantum Symmetries, SQS-3, pp. 181-86 (JINR, Dubna, 2004), [arXiv:hep-th/0401044].
    6.B. Dragovich and A. Khrennikov, -em class="EmphasisTypeItalic">p-Adic and adelic superanalysis,-Bulgarian J. Phys. 33(s2), 159-73 (2006), [arXiv: hep-th/0512318].MATH MathSciNet
    7.B. Dragovich and A. Khrennikov, “Adelic superanalysis,-Proc. Int. Workshop Supersymmetry and Quantum Symmetries, SQS-5, pp. 384-92 (JINR, Dubna, 2006).
    8.J. Schwinger, “A note to the quantum dynamical principle,-Phil. Mag. 44, 1171-193 (1953).View Article MATH MathSciNet
    9.J. L. Martin, “Generalized classical dynamics and “classical analogue-of a Fermi oscillator,-Proc. Royal Soc. A. 251, 536-42 (1959).View Article MATH
    10.J. L. Martin, “The Feynman principle for a Fermi system,-Proc. Royal Soc. A 251, 543-49 (1959).View Article MATH
    11.A. Yu. Khrennikov, “Functional superanalysis,-Uspekhi Matem. Nauk 43, 87-14 (1988); English translation: Russian Math. Surveys 43, 103 (1988).MathSciNet
    12.A. Yu. Khrennikov, Supernalysis (Nauka, Fizmatlit, Moscow, 1997) [in Russian]; English translation: (Kluwer, Dordreht, 1999).
    13.A. Salam and J. Strathdee, “Feynman rules for superfields,-Nucl. Phys. B 86, 142-52 (1975).View Article MathSciNet
    14.J. Wess and B. Zumino, “Supergauge transformations in four dimensions,-Nucl. Phys. B 70, 39-0 (1974).View Article MathSciNet
    15.J. Dell and I. Smolin, “Graded manifolds theory as the geometry of supersymmetry,-Commun. Math. Phys. 66, 197-22 (1979).View Article MATH MathSciNet
    16.B. S. De Witt, Supermanifolds (Cambridge, U. P., 1984).
    17.A. Rogers, “Super Lie groups: global topology and local structure,-J. Math. Phys. 21, 724-31 (1980).
    18.A. Rogers, “A global theory of supermanifolds,-J. Math. Phys. 22, 939-45 (1981).View Article MATH MathSciNet
  • 作者单位:A. Yu. Khrennikov (1)

    1. International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science, Linnaeus University, V?xj?-Kalmar, Sweden
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algebra
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:2070-0474
文摘
The recent experimental confirmation of the existence of Higgs boson stimulates theoretical research on supersymmetric models; in particular, mathematics of such modeling. Therefore we plan to present essentials of one special approach to “super-mathematics- so called functional superanalysis (in the spirit of De Witt, Rogers, Vladimirov and Volovich, and the author of this review) in compact and clear form in series of review-type papers. This first paper is a review on super-differential calculus for the concrete model of the superspace (invented by Vladimirov and Volovich). In the next review we plan to present the integral supercalculus. The main distinguishing feature of functional superanalysis is that this is a real super-extension of analysis of Newton and Leibniz, opposite to algebraic models of Martin and Berezin. Here functions of commuting and anticommuting variables are no simply algebraic elements belonging to Grassmann algebras, but point-wise maps, from superspace into superspace. Finally, we remark that the first non-Archimedean physical model was based on invention by Vladimirov and Volovich of superspaces based on supercommutative Banach superalgebras over non-Archimedean (in particular, p-adic) fields. This model plays the basic role in theory of p-adic superstrings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700