Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae)
详细信息    查看全文
  • 作者:Junhuan Xu (32)
    James P Strange (33)
    Dennis L Welker (32)
    Rosalind R James (33)
  • 关键词:Bees ; Bombus huntii ; Bumble bees ; Detoxification genes ; Transcriptome
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:404 KB
  • 参考文献:1. David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, / et al.: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. / Proc Natl Acad Sci USA 2005, 102:4080鈥?084. CrossRef
    2. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP: Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. / Insect Biochem Molec 2008, 38:540鈥?51. CrossRef
    3. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ: A comparison of Drosophila melanogaster detoxification gene induction response for six insecticides, caffeine and phenobarbital. / Insect Biochem Molec 2006, 36:934鈥?42. CrossRef
    4. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler S, Berenbaum MR, / et al.: A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honey bee. / Insect Mol Biol 2006, 15:615鈥?36. CrossRef
    5. Tribolium Genome Sequencing Consortium: The genome of the model beetle and pest Tribolium castaneum . / Nature 2008, 452:949鈥?55. CrossRef
    6. Bromenshenk JJ, Carlson SR, Simpson JC, Thomas JM: Pollution monitoring of Puget Sound with honey bees. / Science 1985, 227:632鈥?34. CrossRef
    7. Krupke CH, Hunt GI, Eitzer BD, Andino G, Given K: Multiple routes of pesticide exposure for honey bees living near agricultural fields. / PLoS ONE 2012, 7:e29368. CrossRef
    8. Cook D, Manson JS, Gardner DR, Welch KD, Irwin RE: Norditerpene alkaloid concentrations in tissues and floral rewards of larkspur and impacts on pollinators. / Biochem System Ecol 2013, 48:123鈥?31. CrossRef
    9. Corona M, Robinson GE: Genes of the antioxidant system of the honey bee: annotation and phylogeny. / Insect Mol Biol 2006, 15:687鈥?01. CrossRef
    10. Devillers J, Decourtye A, Budzinski H, Pham-Delegue MH, Cluzeau S, Maurin G: Comparative toxicity and hazards of pesticides to Apis and non- Apis bees. A chemometrical study. / SAR QSAR Environ Res 2003, 14:389鈥?03. CrossRef
    11. Misra JR, Horner MA, Lam G, Thummel CS: Transcriptional regulation of xenobiotic detoxification in Drosophila . / Genes Dev 2011, 25:1796鈥?806. CrossRef
    12. Shen SK, Dowd PF: Detoxifying enzymes and insect symbionts. / J Chem Educ 1992, 69:796鈥?99. CrossRef
    13. Johnson RM, Ellis MD, Mullen C, Frazier M: Pesticides and honey bee toxicity-USA. / Apidologie 2010, 41:312鈥?31. CrossRef
    14. Yang T, Liu N: Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes: Culex quinquefasciatus . / PLoS ONE 2011, 6:e29418. CrossRef
    15. Wen Z, Scott JG: Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.). / Insect Biochem Molec 2011, 31:179鈥?87. CrossRef
    16. Yang J, Yang C, Qiao C: Overexpression of protein disulfide isomerase Dsb A enhanced detoxification of organophosphates and enhanced detectability in the environment following degradation of pesticide residues. / World J Microbiol Biotechnol 2011, 27:785鈥?90. CrossRef
    17. Schr枚der P, Collins C: Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. / Intl J Phytoremediat 2002, 4:247鈥?65. CrossRef
    18. Kim BY, Hui WL, Lee KS, Wan H, Yoon HJ, Gui ZZ, / et al.: Molecular cloning and oxidative stress response of a sigma-class glutathione S-transferase of the bumblebee Bombus ignitus . / Comp Biochem Phys B 2011, 158:83鈥?9. CrossRef
    19. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E: Glutathione S-transferase in the defence against pyrethroids in insects. / Insect Biochem Molec 2001, 31:313鈥?19. CrossRef
    20. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E: The role of glutathione S-transferase in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). / Pest Manag Sci 2001, 57:501鈥?08. CrossRef
    21. Enayati AA, Ranson H, Hemmingway J: Insect glutathione transferases and insecticide resistance. / Insect Mol Biol 2005, 14:3鈥?. CrossRef
    22. Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ: Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. / Insect Biochem Molec 2005, 35:597鈥?09. CrossRef
    23. Cook JM: Sex determination in the Hymenoptera: a review of models and evidence. / Heredity 1993, 71:421鈥?35. CrossRef
    24. Kearns CA, Thomson JD: / Natural history of bumble bees: a sourcebook for investigations. Boulder: Univ Press Colorado; 2001.
    25. Leal JFM, Barbancho M: Acetaldehyde detoxification mechanisms in Drosophila melanogaster adults involving aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) enzymes. / Insect Biochem Molec 1992, 22:885鈥?92. CrossRef
    26. DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C: Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae . / Proc Natl Acad Sci USA 2007, 104:2121鈥?126. CrossRef
    27. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ: Characterization of Drosophila melanogaster cytochrome P450 genes. / Proc Natl Acad Sci USA 2009, 106:5731鈥?736. CrossRef
    28. Sehlmeyer S, Wang L, Langel D, Heckel DG, Mohagheghi H, Petschenka G, / et al.: Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (Lepidoptera). / PLoS ONE 2010, 5:e10435. CrossRef
    29. Sallabhan R, Kerdwong J, Dubbs JM, Somsongkul D, Whangsuk W, Piewtongon P, / et al.: The hdhA gene encodes a haloacid dehalogenase that is regulated by the LyseR-Type regulator, HdhR, in Sinorhizobium meliloti . / Mol Biotechnol 2013, 54:148鈥?57. CrossRef
    30. Marcaccia S, Ravetonb M, Ravenelb P, Schwitzgu茅bela JP: The possible role of hydroxylation in the detoxification of atrazine in mature vetiver ( Chrysopodon zizanioides Nash) grown in hydroponics. / Z Naturforsch 2005, 60:427鈥?34.
    31. Cai QN, Han Y, Cao YZ, Hu Y, Zhao X, Bi JL: Detoxification of gramine by the cereal aphid Sitobion avenae . / J Chem Ecol 2009, 35:320鈥?25. CrossRef
    32. Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, / et al.: Reactive oxygen species modulate Anopheles gamiae immunity against bacteria and Plasmodium . / J Biol Chem 2008, 283:3217鈥?223. CrossRef
    33. Halliwell B: Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. / Plant Physiol 2006, 141:312鈥?22. CrossRef
    34. Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, Van Beeumen J, / et al.: Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. / Toxicon 2008, 52:72鈥?3. CrossRef
    35. Luikenhuis S, Perrone G, Dawes IW, Grant CM: The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. / Mol Biol Cell 1998, 9:1081鈥?091. CrossRef
    36. Winter HR, Unadkat JD: Identification of cytochrome P450 and arylamine N-acetyltransferase isoforms involved in sulfadiazine metabolism. / Drug Metab Dispos 2005, 33:969鈥?76. CrossRef
    37. Kubiak X, Dervins-Ravault D, Pluvinage B, Chaffotte AF, Gomez-Valero L, Dairou J, / et al.: Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila . / Biochem J 2012, 445:219鈥?28.
    38. Cardenas CLL, Bourgine J, Cauffiez C, Allorge D, Lo-Guidice JM, Broly F, / et al.: Genetic polymorphisms of glycine N-acyltransferase (GLYAT) in a French caucasian population. / Xenobiotica 2010, 40:853鈥?61. CrossRef
    39. Fleck CB, Brock M: Characterization of an acyl-CoA: carobylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification. / Molec Microbiol 2008, 68:642鈥?56. CrossRef
    40. Marx CJ, Miller JA, Chistoserdova L, Lidstrom ME: Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. / J Bacteriol 2004, 186:2173鈥?178. CrossRef
    41. Quin G, Jia M, Liu T, Zhang X, Guo Y, Zhu K, / et al.: Heterologous expression and characterization of a sigma glutathione S-transferase involved in carbaryl detoxification from oriental migratory locust, Locusta migratoria manilensis (Meyen). / J Insect Physiol 2012, 58:220鈥?27. CrossRef
    42. Huang LF, Su B, Jao SC, Liu KT, Li WS: Aminopeptidase P mediated detoxification of organophosphonate analogues of sarin: mechanistic and stereochemical study at the phosphorus atom of the substrate. / ChemBioChem 2006, 7:506鈥?14. CrossRef
    43. Jancova P, Anzenbacker P, Anzenbacherova E: Phase II drug metabolizing enzymes. / Biomed Pap MEd Facul Univ Palacky Olomouc Chech Repub 2010, 154:103鈥?16. CrossRef
    44. Terriere LC: Induction of detoxification enzymes in insects. / Ann Rev Entomol 1984, 29:71鈥?8. CrossRef
    45. Han Q, Li J: Comparative characterization of Aedes 3-hydroxykynurenine transaminase/alanine glyoxylate transaminase and Drosophila serine pyruvate aminotransferase. / FEBS Letters 2002, 527:199鈥?04. CrossRef
    46. Amirmohammadi F, Sendi JJ, Zibaee A: Toxicity and physiological effects of essential oil of Artemisia annua (Labiatae) on Agriolimax agrestis L. (Stylommatophoa: Limacidae). / J Plant Protect Res 2012, 52:185鈥?89. CrossRef
    47. Bates JM, Akerlund J, Mittge E, Guillemin K: Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in response to the gut microbiota. / Cell Host Microbe 2007, 2:371鈥?82. CrossRef
    48. Dowd PF: Insect fungal symbionts: a promising source of detoxifying enzymes. / J Indust Microbiol 1992, 9:149鈥?61. CrossRef
    49. Shitomi Y, Hayakawa T, Hossain DM, Higuchi M, Miyamoto K, Nakanishi K, / et al.: A novel 96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx mori midgut, which binds to Cry1 Ac toxin of Bacillus thuringiensis . / J Biochem 2006, 139:223鈥?33. CrossRef
    50. Chandran NS, Vunnava P, Wu Y, Kapatos G: Specificity proteins Sp1 and Sp3 interact with the rat GTP cyclohyrolase I proximal promoter to regulate transcription. / J Neurochem 2008, 104:1233鈥?248. CrossRef
    51. Reszka E, Chung KR, Tekauz A, Malkus A, Arseniuk E, Krupinsky JM, / et al.: Presence of 尾-glucosidase ( bgl1 ) gene in Phaeosphaeria nodorum and Phaeosphaeria avenaria f.sp. triticea . / Can J Botany 2005, 83:1001鈥?014. CrossRef
    52. Bork P, Koonin EV: A new family of carbon-nitrogen hydrolases. / Protein Sci 1994, 3:1344鈥?346. CrossRef
    53. McLoughlin SY, Jackson C, Liu JW, Ollis DL: Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. / Appl Environm Microbiol 2004, 70:404鈥?12. CrossRef
    54. Ahmed S, Saleem MA, Shahzad RK: Effect of cypermethrin (10 EC) and bifenthrin (10 EC) on levels of acid and alkaline phosphatases in a strain of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). / Pakistani Entomol 2004, 26:47鈥?2.
    55. Yang Y, Chen H, Wu Y, Yang Y, Wu S: Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. / Appl Environm Microbiol 2007, 73:6939鈥?944. CrossRef
    56. Lee SM, Lee SB, Park CH, Choi J: Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, Chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. / Chemosphere 2006, 65:1074鈥?081. CrossRef
    57. Zagrobelny M, Bak S, Rasmussen AV, J酶rgensen B, Naumann CM, M酶ller BL: Cyanogenic glucosides and plant-insect interactions. / Phytochemistry 2004, 65:293鈥?06. CrossRef
    58. Borges AA, Humann FC, Tavares MG, Campos LAO, Hartfelder K: Gene copy number and differential gene expression in haploid and diploid males of the stingless bee, Melipona quadrifasciata . / Insect Soc 2012, 59:587鈥?98. CrossRef
    59. Detzel A, Wink M: Attraction, deterrence or intoxication of bees ( Apis mellifera ) by plant allelochemicals. / Chemoecology 1993, 4:8鈥?8. CrossRef
    60. Bainbridge S, Bownes M: Ecdysteroid titer during Drosophila development. / Biochem 1988, 18:185鈥?97.
    61. Buckner JS, Kemp WP, Bosch J: Characterization of the triacylglycerols from overwintering prepupae of the alfalfa pollinator Megachile rotundata (Hymenoptera: Megachilidae). / Arch Insect Biochem Physiol 2004, 57:1鈥?4. CrossRef
    62. Robinson FA, Nation JL: Long-chain fatty acids in honeybees in relation to sex, caste, and food during development. / J Apicul Res 1970, 9:121鈥?27.
    63. Kostaropoulos I, Mantzari AE, Papadopoulos AI: Alterations of some glutathione S-transferase characteristics during the development of Tenebrio molitor (Insecta: Coleoptera). / Insect Biochem Molec 1996, 26:963鈥?69. CrossRef
    64. Mao W, Schuler MA, Berenbaum MR: Honey constituents up-regulate detoxifcation and immunity genes in the western honey bee Apis mellifera . / Proc Natl Acad Sci USA 2013. doi: 0.1073/pnas.1303884110
    65. Adler LS, Irwin RE: Ecological costs and benefits of defenses in nectar. / Ecology 2005, 86:2968鈥?978. CrossRef
    66. Strange JP: Nest initiation in three North American bumble bees ( Bombus ): gyne number and presence of honey bee workers influence establishment success and colony size. / J Insect Science 2010, 10:1鈥?1. CrossRef
    67. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. / Nature Methods 2008, 5:621鈥?28. CrossRef
    68. Wilhelm BT, Landry JR: RNA-Seq-quantitative measurement of expression through passively parallel RNA-sequencing. / Methods 2009, 48:249鈥?57. CrossRef
  • 作者单位:Junhuan Xu (32)
    James P Strange (33)
    Dennis L Welker (32)
    Rosalind R James (33)

    32. Department of Biology, Utah State University, 1410 N 800 E, North Logan, UT, 84341, USA
    33. USDA-ARS, Pollinating Insects Research Unit, Department of Biology, Utah State University, Logan, UT, 84322-5310, USA
  • ISSN:1471-2164
文摘
Background The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. Results We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. Conclusions Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees, and perhaps results from their symbiotic relationship with plants. Many flowering plants benefit from pollinators, and thus offer these insects rewards (such as nectar) rather than defensive plant toxins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700