Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold
详细信息    查看全文
  • 作者:A. Rodríguez (1)
    A. Acosta (2)
    C. Rodríguez (3)
  • 关键词:Fungicide resistance ; Gray mold ; Tomato greenhouses ; Biocontrol
  • 刊名:World Journal of Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:30
  • 期:9
  • 页码:2397-2406
  • 全文大小:315 KB
  • 参考文献:1. Amiri A, Heath SM, Peres NA (2013) Phenotypic characterization of multifungicide resistance in / Botrytis cinerea isolates from strawberry fields in Florida. Plant Dis 97:393-01 CrossRef
    2. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188-194 CrossRef
    3. Badawy MEI, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharverst Biol Technol 51:110-17 CrossRef
    4. Bardas GA, Veloukas T, Koutita O, Karaoglanidis GS (2010) Multiple resistance of / Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag Sci 66:967-73 CrossRef
    5. Baroffio CA, Siegfried W, Hilber UW (2003) Long-term monitoring for resistance of / Botryotinia fuckeliana to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicides in Switzerland. Plant Dis 87:662-66 CrossRef
    6. Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by / Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285-90 CrossRef
    7. Ca?amas TP, Vi?as I, Torres R, Usall J, Solsona C, Teixido N (2011) Field applications of improved formulations of / Candida sake CPA-1 for control of / Botrytis cinerea in grapes. Biol Control 56:150-58 CrossRef
    8. Dal Bello G, Monaco G, Rollan MC, Lampugnani G, Arteta N, Abramoff C, Ronco L, Stocco M (2008) Biocontrol of postharvest grey mould on tomato by yeasts. Phytopathology 156:257-63 CrossRef
    9. Dik AJ, Elad Y (1999) Comparison of antagonists of / Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. Eur J Plant Pathol 105:123-37 CrossRef
    10. Edwards SG, Seddon B (2001) Selective media for the specific isolation and enumeration of / Botrytis cinerea conidia. Lett Appl Microbiol 32:63-6 CrossRef
    11. Elad Y, Stewart A (2004) Microbial control of / Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 223-41
    12. Elad Y, Yunis H, Katan T (1992) Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of / Botrytis cinerea in Israel. Plant Pathol 41:41-6 CrossRef
    13. Fernández-Ortu?o D, Chen F, Schnabel G (2012) Resistance to pyraclostrobin and boscalid in / Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Dis 96:1198-203 CrossRef
    14. Fillinger S, Leroux P, Auclair C, Barreau C, Al Hajj C, Debieu D (2008) Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus / Botrytis cinerea. Antimicrob Agents Chemother 52:3933-940 CrossRef
    15. Kalogiannis S, Tjamos SE, Stergiou A, Antoniou PP, Ziogas BN, Tjamos EC (2006) Selection and evaluation of phyllosphere yeast as biocontrol agents against grey mould of tomato. Eur J Plant Pathol 116:69-6 CrossRef
    16. Katan T, Elad Y, Yuris H (1989) Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of / Botrytis cinerea. Plant Pathol 38:86-2 CrossRef
    17. Kim YK, Xiao CL (2010) Resistance to pyraclostrobin and boscalid in populations of / Botrytis cinerea from stored apples in Washington State. Plant Dis 94:604-12 CrossRef
    18. Korolev N, Mamiev M, Zahavi T, Elad Y (2011) Screening of / Botrytis cinerea isolates from vineyards in Israel for resistance to fungicides. Eur J Plant Pathol 129:591-08 CrossRef
    19. Latorre BA, Torres R (2012) Prevalence of isolates of / Botrytis cinerea resistant to multiple fungicides in chilean vineyards. Crop Prot 40:49-2 CrossRef
    20. Lee JP, Lee S-W, Kim CS, Son JH, Lee KY (2006) Evaluation of formulations of / Bacillus licheniformis for the biological control of tomato gray mold caused by / Botrytis cinerea. Biol Control 37:329-37 CrossRef
    21. Leroch M, Kretschmer M, Hahn M (2011) Fungicide resistance phenotypes of / Botrytis cinerea isolates from commercial vineyards in south west Germany. J Phytopathol 159:63-5 CrossRef
    22. Leroux P (2004) Chemical control of / Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 195-22
    23. Mari M, Guizzardi M, Brunelli M, Folchi A (1996) Postharvest biological control of grey mould ( / Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with / Bacillus amyloliquefaciens. Crop Prot 8:699-05 CrossRef
    24. Moyano C, Gómez V, Melgarejo P (2004) Resistance to pyrimethanil and other fungicides in / Botrytis cinerea populations collected on vegetable crops in Spain. J Phytopathol 152:484-90 CrossRef
    25. Myresiotis CK, Karaoglanidis GS, Tzavella-Klonari K (2007) Resistance of / Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis 91:407-13 CrossRef
    26. O′Neill TM, Niv A, Elad Y, Shtienberg D (1996) Biological control of / Botrytis cinerea on tomato stem wounds with / Trichoderma harzianum. Eur J Plant Pathol 102:635-43 CrossRef
    27. O’Neill TM, Shtienberg D, Elad Y (1997) Effect of some host and microclimate factors on infection of tomato stems by / Botrytis cinerea. Plant Dis 81:36-0 CrossRef
    28. Raposo R, Delcan J, Gomez V, Melgarejo P (1996) Distribution and fitness of / Botrytis cinerea with multiple fungicide resistance in Spanish greenhouses. Plant Pathol 45:497-05 CrossRef
    29. Rosslenbroich HJ, Stuebler D (2000) / Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Prot 19:557-61 CrossRef
    30. Sadfi-Zouaoui N, Hannachi I, Andurand D, Essghaier B, Boudabous A, Nicot P (2008) Biological control of / Botrytis cinerea on stem wounds with moderately halophilic bacteria. World J Microbiol Biotechnol 24:2871-877 CrossRef
    31. Saligkarias ID, Gravanis FT, Epton HAS (2002) Biological control of / Botrytis cinerea on tomato plants by the use of epiphytic yeast / Candida guilliermondii stratins 101 and US 7 and / Candida oleophila strain I-182: I. in vivo studies. Biol Control 25:143-50 CrossRef
    32. Sun HY, Wang HC, Chen Y, Li HX, Chen CJ, Zhou MG (2010) Multiple resistance of / Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Dis 94:551-56 CrossRef
    33. Vi?as I, Usall J, Teixido N, Sanchis V (1998) Biological control of major postharvest on apple with / Candida sake. Int J Food Microbiol 40:9-6 CrossRef
    34. Wang F, Feng G, Chen K (2009) Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor. Postharvest Biol Technol 52:110-16 CrossRef
    35. Weber RWS (2011) Resistance of / Botrytis cinerea to multiple fungicides in northern German small-fruit production. Plant Dis 95:1263-269 CrossRef
    36. Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) / Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561-80 CrossRef
    37. Yourman LF, Jeffers SN (1999) Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of / Botrytis cinerea. Plant Dis 83:569-75 CrossRef
    38. Zhang CQ, Hu JL, Wei FL, Zhu GN (2009) Evolution of resistance to different classes of fungicides in / Botrytis cinerea from greenhouse vegetables in eastern China. Phytoparasitica 37:351-59 CrossRef
    39. Zhang C, Chen K, Wang G (2013) Combination of the biocontrol yeast / Crytococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. Biocontrol 58:269-81 CrossRef
    40. Zong Y, Liu J, Li B, Qin G, Tian S (2010) Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biol Control 54:316-21 CrossRef
  • 作者单位:A. Rodríguez (1)
    A. Acosta (2)
    C. Rodríguez (3)

    1. Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, 38206, La Laguna, Tenerife, Canary Islands, Spain
    2. Centro de Conservación de la Biodiversidad Agrícola de Tenerife, Cabildo de Tenerife, Ctra. Gral. Tacoronte-Tejina, 38350, Tacoronte, Tenerife, Canary Islands, Spain
    3. Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Apdo. 60, 38200, La Laguna, Tenerife, Canary Islands, Spain
  • ISSN:1573-0972
文摘
Tomato greenhouses in the Canary Islands, Spain, were surveyed to estimate frequencies of resistance to benzimidazoles, dicarboximides, anilinopyrimidines and N-phenylcarbamates in Botrytis cinerea. Resistance to carbendazim, iprodione, pyrimethanil and diethofencarb was found in 74.2, 86.4, 28.8 and 31.8?% of isolates, respectively. Benzimidazole- and anilinopyrimide-resistant isolates were highly resistant, showing EC50 values above 500?μg/ml carbendazim and a mean EC50 value of 28.42?μg/ml pyrimethanil, respectively. By contrast, a low level of resistance was observed among dicarboximide-resistant isolates (mean EC50 value of 1.81?μg/ml iprodione). Phenotypes with double resistance to carbendazim and iprodione, and triple resistance to carbendazim, iprodione and pyrimethanil were the most common, occurring in 36.4 and 28.8?% of isolates. The surveyed greenhouses had never been treated with fenhexamid and Signum?(pre-packed mixture of boscalid and pyraclostrobin), and baseline sensitivities of B. cinerea isolates to these fungicides were determined. The EC50 values were within the range of 0.009-.795?μg/ml fenhexamid and of 0.014-.48?μg/ml Signum. In addition, available formulations based on elicitors of plant defense response and biocontrol agents were evaluated against B. cinerea in tomato plants under semi-controlled greenhouse conditions, the yeast Candida sake CPA-1 being able to reduce gray mold significantly when it was applied on petiole wounds and the plants were inoculated 24?h later. Likewise, C. sake was effective against B. cinerea in harvested tomato fruits, yeast-treated tomatoes showed a 70.66 and 30.31?% reduction in the diameters of decay lesions compared with controls after 10?days of storage at 20 and 9?°C, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700