Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses
详细信息    查看全文
  • 作者:Vincent Gigon ; C茅dric Camps ; Josiane Le Corff
  • 关键词:Biological control ; Phytoseiulus macropilis ; Intraguild predation ; Tomato ; Tetranychus urticae ; Macrolophus pygmaeus
  • 刊名:Experimental and Applied Acarology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:68
  • 期:1
  • 页码:55-70
  • 全文大小:710 KB
  • 参考文献:Ali F (1998) Life tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at different temperatures. Exp Appl Acarol 22:335鈥?42CrossRef
    Cakmak I, Janssen A, Sabelis MW, Baspinar H (2009) Biological control of an acarine pest by single and multiple natural enemies. Biol Control 50:60鈥?5CrossRef
    Choh Y, van der Hammen T, Sabelis MW, Janssen A (2010) Cues of intraguild predators affect the distribution of intraguild prey. Oecologia 163:335鈥?40PubMedCentral CrossRef PubMed
    Coombs MR, Bale JS (2014) Thermal biology of the spider mite predator Phytoseiulus macropilis. Biocontrol 59:205鈥?17. doi:10.鈥?007/鈥媠10526-014-9559-x CrossRef
    Enkegaard A, Br酶dsgaard HF, Hansen D (2001) Macrolophus caliginosus: functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomol Exp Appl 101:81鈥?8CrossRef
    Ferla NJ, Marchetti M, Johann L, Haetinger C (2011) Functional response of Phytoseiulus macropilis under different Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) population density in laboratory. Zool Curitiba Impresso 28:17鈥?2. doi:10.鈥?590/鈥婼1984-4670201100010000鈥? CrossRef
    Ferrero M, Calvo FJ, Atuahiva T et al (2011) Biological control of Tetranychus evansi Baker & Pritchard and Tetranychus urticae Koch by Phytoseiulus longipes Evans in tomato greenhouses in Spain [Acari: Tetranychidae, Phytoseiidae]. Biol Control 58:30鈥?5. doi:10.鈥?016/鈥媕.鈥媌iocontrol.鈥?011.鈥?3.鈥?12 CrossRef
    Gerson U, Weintraub PG (2012) Mites (Acari) as a factor in greenhouse management. Annu Rev Entomol 57:229鈥?47CrossRef PubMed
    Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell, LondonCrossRef
    Greco NM, Liljesthr枚m GG, S脿nchez NE (1999) Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) on strawberry. Exp Appl Acarol 23:567鈥?80CrossRef
    Hamdi F, Chadoeuf J, Chermiti B, Bonato O (2013) Evidence of cannibalism in Macrolophus pygmaeus, a natural enemy of whiteflies. J Insect Behav 26:614鈥?21. doi:10.鈥?007/鈥媠10905-013-9379-3 CrossRef
    Hansen DL, Brodsgaard HF, Enkegaard A (1999) Life table characteristics of Macrolophus caliginosus preying upon Tetranychus urticae. Entomol Exp Appl 93:269鈥?75CrossRef
    H酶jsgaard S, Halekoh U, Yan J (2006) The R package geepack for generalized estimating equations. J Stat Software 15:1鈥?1
    Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745鈥?64CrossRef
    Janssen A, Sabelis MW, Magalh茫es S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713鈥?719CrossRef PubMed
    Lucas E, Rosenheim JA (2011) Influence of extraguild prey density on intraguild predation by heteropteran predators: a review of the evidence and a case study. Biol Control 59:61鈥?7. doi:10.鈥?016/鈥媕.鈥媌iocontrol.鈥?011.鈥?5.鈥?10 CrossRef
    Magalh茫es S, Janssen A, Hanna R, Sabelis MW (2002) Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia 132:143鈥?49. doi:10.鈥?007/鈥媠00442-002-0950-4 CrossRef
    Malausa JC, Trottin-Caudal Y (1996) Advances on the strategy of use of the predaceous bug, Macrolophus caliginosus (Heteroptera, Miridae) in glasshouse crops. Zoophytophagous Heteroptera Implic. Life Hist. Integr. Pest Manag. Thomas Say Publications (Etats-Unis), pp 178鈥?89
    Mal茅zieux S, Girardet C, Navez B, Cheyrias J (1995) Contre l鈥檃leurode des serres en cultures de tomates sous abris: utilisation et d茅veloppement de Macrolophus caliginosus associ茅 脿 Encarsia formosa. Phytoma 471:29鈥?2
    McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291鈥?21CrossRef PubMed
    Messelink GJ, Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol Control 79:1鈥?CrossRef
    Nachman G, Zemek R (2002) Interactions in a tritrophic acarine predator鈥損rey metapopulation system IV: effects of host plant condition on Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 26:43鈥?0. doi:10.鈥?023/鈥婣:鈥?020929318422 CrossRef PubMed
    Oliveira H, Janssen A, Pallini A et al (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biol Control 42:105鈥?09CrossRef
    Oliveira H, Fadini MAM, Venzon M et al (2009) Evaluation of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp Appl Acarol 47:275鈥?83. doi:10.鈥?007/鈥媠10493-008-9217-z CrossRef PubMed
    Pallini A, Janssen A, Sabelis MW (1999) Spider mites avoid plants with predators. Exp Appl Acarol 23:803鈥?15CrossRef
    Perdikis DC, Lykouressis DP (2002) Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomol Exp Appl 102:261鈥?72CrossRef
    Pilkington LJ, Messelink G, van Lenteren JC, Le Mottee K (2010) 鈥楶rotected biological control鈥欌€攂iological pest management in the greenhouse industry. Biol Control 52:216鈥?20. doi:10.鈥?016/鈥媕.鈥媌iocontrol.鈥?009.鈥?5.鈥?22 CrossRef
    Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297鈥?30. doi:10.鈥?146/鈥媋nnurev.鈥媏s.鈥?0.鈥?10189.鈥?01501 CrossRef
    R Core Team (2015) A language and environment for statistical computing. R Foundation for statistical computing Vienna. http://鈥媤ww.鈥婻-project.鈥媜rg/鈥?/span>
    Rosenheim JA, Kaya HK, Ehler LE et al (1995) Intraguild predation among biological control agents: theory and evidence. Biol Control 5:303鈥?35. doi:10.鈥?006/鈥媌con.鈥?995.鈥?038 CrossRef
    Shipp L, Johansen N, V盲nninen I, Jacobsen R (2011) Greenhouse climate: an important consideration when developing pest management programs for greenhouse crops. Acta Hort ISHS 893:133鈥?43CrossRef
    Skirvin DJ, Fenlon JS (2003) The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 31:37鈥?9CrossRef PubMed
    Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732鈥?35CrossRef
    Trottin-Caudal Y, Millot P (1994) Lutte int茅gr茅e contre les ravageurs sur tomate sous abri, situation et perspectives en France. IOBC WPRS Bull 17:25鈥?8
    van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19:375鈥?84CrossRef
    van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1鈥?0. doi:10.鈥?007/鈥媠10526-011-9395-1 CrossRef
    Vance-Chalcraft HD, Rosenheim JA, Vonesh JR et al (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689鈥?696CrossRef PubMed
    Vangansbeke D, Schrijver L, Spranghers T et al (2013) Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 61:285鈥?98. doi:10.鈥?007/鈥媠10493-013-9704-8 CrossRef PubMed
    Walzer A, Schausberger P (2013) Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk. Exp Appl Acarol 60:95鈥?15. doi:10.鈥?007/鈥媠10493-012-9624-z PubMedCentral CrossRef PubMed
    Walzer A, Moder K, Schausberger P (2009) Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators. Bull Entomol Res 99:457. doi:10.鈥?017/鈥婼000748530800649鈥? CrossRef PubMed
    Yan J (2002) 鈥楪eepack鈥? yet another package for generalized estimating equations. R News 2(3):12鈥?4
    Zar JH (2010) Biostatistical analysis, 5th edn. Pearson International Edition, New Jersey
    Zhang Z-Q, Sanderson JP (1997) Patterns, mechanisms and spatial scale of aggregation in generalist and specialist predatory mites (Acari: Phytoseiidae). Exp Appl Acarol 21:393鈥?04CrossRef
  • 作者单位:Vincent Gigon (1)
    C茅dric Camps (2)
    Josiane Le Corff (3)

    1. Hepia Geneva, University of Applied Sciences and Arts of Western Switzerland (HES-SO), route de Presinge 150, 1254, Jussy, Switzerland
    2. Agroscope - Institute of Plant Production Sciences, route des vergers 18, 1964, Conthey, Switzerland
    3. Agrocampus Ouest - Angers, UMR 1349 IGEPP, 2 rue le N么tre, 49045, Angers, France
  • 刊物主题:Entomology; Animal Systematics/Taxonomy/Biogeography; Animal Genetics and Genomics; Animal Ecology; Life Sciences, general;
  • 出版者:Springer Netherlands
  • ISSN:1572-9702
文摘
Biological control against phytophagous arthropods has been widely used under greenhouse conditions. Its success is dependent on a number of factors related to the abiotic conditions and to the interactions between pests and biological control agents. In particular, when multiple predator species are introduced to suppress one pest, competitive interactions might occur, including intraguild predation (IGP). In tomato crops, the spider mite Tetranychus urticae Koch is a very problematic phytophagous mite and its control is not yet satisfactory. In 2012 and 2013, the ability of a potential new predatory mite Phytoseiulus macropilis (Banks) was assessed, alone and in the presence of Macrolophus pygmaeus Rambur. Macrolophus pygmaeus is a polyphagous mirid supposed to predate on P. macropilis. Both years, under greenhouse conditions, the effectiveness of the two predators was compared between the following treatments: T. urticae, T. urticae + P. macropilis, T. urticae + M. pygmaeus, and T. urticae + P. macropilis + M. pygmaeus. The number of arthropods per tomato plant over time indicated that P. macropilis well-controlled the population of T. urticae, whereas M. pygmaeus had a very limited impact. Furthermore, there was no evidence of IGP between the two predators but in the presence of M. pygmaeus, P. macropilis tended to have a more clumped spatial distribution. Further studies should clarify the number and location of inoculation points to optimize the control of T. urticae by P. macropilis. Keywords Biological control Phytoseiulus macropilis Intraguild predation Tomato Tetranychus urticae Macrolophus pygmaeus

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700