Loss of coupling between calcium influx, energy consumption and insulin secretion associated with development of hyperglycaemia in the UCD-T2DM rat model of type 2 diabetes
详细信息    查看全文
  • 作者:A. M. Rountree (1)
    B. J. Reed (1)
    B. P. Cummings (2)
    S.-R. Jung (1)
    K. L. Stanhope (2)
    J. L. Graham (2)
    S. C. Griffen (3)
    R. L. Hull (4)
    P. J. Havel (2)
    I. R. Sweet (1)
  • 关键词:Calcium ; Hyperglycaemia ; Insulin secretion ; Islets ; Oxygen consumption
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:56
  • 期:4
  • 页码:803-813
  • 全文大小:820KB
  • 参考文献:1. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271-73 dx.doi.org/10.1038/311271a0">CrossRef
    2. Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739-51 dx.doi.org/10.1007/s00125-009-1314-y">CrossRef
    3. Prentki M (1996) New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol 134:272-86 dx.doi.org/10.1530/eje.0.1340272">CrossRef
    4. Ivarsson R, Quintens R, Dejonghe S et al (2005) Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54:2132-142 dx.doi.org/10.2337/diabetes.54.7.2132">CrossRef
    5. Corkey BE, Deeney JT, Yaney GC, Tornheim K, Prentki M (2000) The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr 130:299S-04S
    6. Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest 91:871-80 dx.doi.org/10.1172/JCI116308">CrossRef
    7. Jung SR, Kuok IT, Couron D et al (2011) Reduced cytochrome / c is an essential regulator of sustained insulin secretion by pancreatic islets. J Biol Chem 286:17422-7434 dx.doi.org/10.1074/jbc.M110.202820">CrossRef
    8. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5:253-64 dx.doi.org/10.1016/j.cmet.2007.02.008">CrossRef
    9. Pi J, Bai Y, Zhang Q et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783-791 dx.doi.org/10.2337/db06-1601">CrossRef
    10. Jensen MV, Joseph JW, Ilkayeva O et al (2006) Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem 281:22342-2351 dx.doi.org/10.1074/jbc.M604350200">CrossRef
    11. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288:E1–E15 dx.doi.org/10.1152/ajpendo.00218.2004">CrossRef
    12. Hasan NM, Longacre MJ, Stoker SW et al (2008) Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem 283:28048-8059 dx.doi.org/10.1074/jbc.M804170200">CrossRef
    13. Jung SR, Reed BJ, Sweet IR (2009) A highly energetic process couples calcium influx through L-type calcium channels to insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 297:E717–E727 dx.doi.org/10.1152/ajpendo.00282.2009">CrossRef
    14. Gilbert M, Jung SR, Reed BJ, Sweet IR (2008) Islet oxygen consumption and insulin secretion tightly coupled to calcium derived from L-type calcium channels but not from the endoplasmic reticulum. J Biol Chem 283:24334-4342 dx.doi.org/10.1074/jbc.M802097200">CrossRef
    15. Sweet IR, Gilbert M (2006) Contribution of calcium influx in mediating glucose-stimulated oxygen consumption in pancreatic islets. Diabetes 55:3509-519 dx.doi.org/10.2337/db06-0400">CrossRef
    16. Ortsater H, Liss P, Akerman KE, Bergsten P (2002) Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflugers Arch 444:506-12 dx.doi.org/10.1007/s00424-002-0842-9">CrossRef
    17. Cummings BP, Digitale EK, Stanhope KL et al (2008) Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat. Am J Physiol Regul Integr Comp Physiol 295:R1782–R1793 dx.doi.org/10.1152/ajpregu.90635.2008">CrossRef
    18. Sweet IR, Cook DL, DeJulio E et al (2004) Regulation of ATP/ADP in pancreatic islets. Diabetes 53:401-09 dx.doi.org/10.2337/diabetes.53.2.401">CrossRef
    19. Matsumoto S, Shibata S, Kirchhof N (1999) Immediate reversal of diabetes in primates following intraportal transplantation of porcine islets purified on a new histidine-lactoioniate-iodixanol gradient. Transplantation 67:S220 dx.doi.org/10.1097/00007890-199904150-00880">CrossRef
    20. Sweet IR, Cook DL, Wiseman RW et al (2002) Dynamic perifusion to maintain and assess isolated pancreatic islets. Diabetes Technol Ther 4:67-6 dx.doi.org/10.1089/15209150252924111">CrossRef
    21. Sweet IR, Khalil G, Wallen AR et al (2002) Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol Ther 4:661-72 dx.doi.org/10.1089/152091502320798303">CrossRef
    22. Jung SR, Reed BJ, Sweet IR (2009) A highly energetic process couples calcium influx through L-type calcium channels to insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 297:E717–E727 dx.doi.org/10.1152/ajpendo.00282.2009">CrossRef
    23. Nobes CD, Brown GC, Olive PN, Brand MD (1990) Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem 265:12903-2909
    24. Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB (2010) Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol 299:C464–C476 dx.doi.org/10.1152/ajpcell.00563.2009">CrossRef
    25. Wikstrom JD, Sereda SB, Stiles L et al (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 7:e33023 dx.doi.org/10.1371/journal.pone.0033023">CrossRef
    26. Affourtit C, Brand MD (2006) Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria. Biochem J 393:151-59 dx.doi.org/10.1042/BJ20051280">CrossRef
    27. Warnotte C, Gilon P, Nenquin M, Henquin JC (1994) Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effects in mouse beta-cells. Diabetes 43:703-11 dx.doi.org/10.2337/diabetes.43.5.703">CrossRef
    28. Sener A, Somers G, Devis G, Malaisse WJ (1981) The stimulus-secretion coupling of amino acid-induced insulin release. Biosynthetic and secretory responses of rat pancreatic islet to L-leucine and L-glutamine. Diabetologia 21:135-42 dx.doi.org/10.1007/BF00251281">CrossRef
    29. Yoshikawa H, Ma Z, Bjorklund A, Grill V (2004) Short-term intermittent exposure to diazoxide improves functional performance of beta-cells in a high-glucose environment. Am J Physiol Endocrinol Metab 287:E1202–E1208 dx.doi.org/10.1152/ajpendo.00255.2004">CrossRef
    30. Steil GM, Trivedi N, Jonas JC et al (2001) Adaptation of beta-cell mass to substrate oversupply: enhanced function with normal gene expression. Am J Physiol Endocrinol Metab 280:E788–E796
    31. Liu YQ, Jetton TL, Leahy JL (2002) Beta-cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem 277:39163-9168 dx.doi.org/10.1074/jbc.M207157200">CrossRef
    32. Hayek A, Woodside W (1979) Correlation between morphology and function in isolated islets of the Zucker rat. Diabetes 28:565-69 dx.doi.org/10.2337/diabetes.28.6.565">CrossRef
    33. Huang CJ, Gurlo T, Haataja L et al (2010) Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes. J Biol Chem 285:339-48 dx.doi.org/10.1074/jbc.M109.024190">CrossRef
    34. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102 dx.doi.org/10.2337/diabetes.53.2007.S96">CrossRef
    35. Sargsyan E, Ortsater H, Thorn K, Bergsten P (2008) Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic beta-cells. J Endocrinol 199:41-0 dx.doi.org/10.1677/JOE-08-0251">CrossRef
    36. Gier B, Krippeit-Drews P, Sheiko T et al (2009) Suppression of KATP channel activity protects murine pancreatic beta cells against oxidative stress. J Clin Invest 119:3246-256
  • 作者单位:A. M. Rountree (1)
    B. J. Reed (1)
    B. P. Cummings (2)
    S.-R. Jung (1)
    K. L. Stanhope (2)
    J. L. Graham (2)
    S. C. Griffen (3)
    R. L. Hull (4)
    P. J. Havel (2)
    I. R. Sweet (1)

    1. Diabetes and Obesity Center of Excellence, University of Washington, 850 Republican Street, Seattle, WA, 98109-8055, USA
    2. Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA
    3. Bristol-Myers Squibb, Princeton, NJ, USA
    4. Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
  • ISSN:1432-0428
文摘
Aims/hypothesis Previous studies on isolated islets have demonstrated tight coupling between calcium (Ca2+) influx and oxygen consumption rate (OCR) that is correlated with insulin secretion rate (ISR). To explain these observations, we have proposed a mechanism whereby the activation of a highly energetic process (Ca2+/metabolic coupling process [CMCP]) by Ca2+ mediates the stimulation of ISR. The aim of the study was to test whether impairment of the CMCP could play a role in the development of type 2 diabetes. Methods Glucose- and Ca2+-mediated changes in OCR and ISR in isolated islets were compared with the time course of changes of plasma insulin concentrations observed during the progression to hyperglycaemia in a rat model of type-2 diabetes (the University of California at Davis type 2 diabetes mellitus [UCD-T2DM] rat). Islets were isolated from UCD-T2DM rats before, 1?week, and 3?weeks after the onset of hyperglycaemia. Results Glucose stimulation of cytosolic Ca2+ and OCR was similar for islets harvested before and 1?week after the onset of hyperglycaemia. In contrast, a loss of decrement in islet OCR and ISR in response to Ca2+ channel blockade coincided with decreased fasting plasma insulin concentrations observed in rats 3?weeks after the onset of hyperglycaemia. Conclusions/interpretation These results suggest that phenotypic impairment of diabetic islets in the UCD-T2DM rat is downstream of Ca2+ influx and involves unregulated stimulation of the CMCP. The continuously elevated levels of CMCP induced by chronic hyperglycaemia in these islets may mediate the loss of islet function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700