Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates
详细信息    查看全文
  • 作者:Douglas B. Jordan (1)
    Kurt Wagschal (2)
    Arabela A. Grigorescu (3)
    Jay D. Braker (1)
  • 关键词:Glycoside hydrolase ; GH43 ; Five ; bladed propeller ; Biomass ; Transportation fuel
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:97
  • 期:10
  • 页码:4415-4428
  • 全文大小:357KB
  • 参考文献:1. Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Structure of the two-subsite β-d -xylosidase from / Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane. Arch Biochem Biophys 474:157-66. doi:10.1016/j.abb.2008.03.007 CrossRef
    2. Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) The structure of an inverting GH43 β-xylosidase from / Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 359:97-09. doi:10.1016/j.jmb.2006.03.005 CrossRef
    3. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663 CrossRef
    4. Demeler B (2004) UltraScan version 9.9. A comprehensive data analysis software package for analytical ultracentrifugation experiments. The University of Texas Health Science Center, Department of Biochemistry, San Antonio, TX
    5. Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1:2-7. doi:10.1111/j.1757-1707.2009.01004.x CrossRef
    6. Ducret A, Van Oostveen I, Eng JK, Yates JR III, Aebersold R (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706-19. doi:10.1002/pro.5560070320 CrossRef
    7. Fan Z, Yuan L, Jordan DB, Wagschal K, Heng C, Braker JD (2010) Engineering lower inhibitor affinities in β-d -xylosidase. Appl Microbiol Biotechnol 86:1099-113. doi:10.1007/s00253-009-2335-7 CrossRef
    8. Himmel ME (ed) (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford
    9. Jordan DB (2008) β-d -Xylosidase from / Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl Biochem Biotechnol 146:137-49. doi:10.1007/s12010-007-8064-4 CrossRef
    10. Jordan DB, Braker JD (2007) Inhibition of the two-subsite β-d -xylosidase from / Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes. Arch Biochem Biophys 465:231-46. doi:10.1016/j.abb.2007.05.016 CrossRef
    11. Jordan DB, Braker JD (2009) β-d -Xylosidase from / Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions. Appl Biochem Biotechnol 155:330-46. doi:10.1007/s12010-008-8397-7 CrossRef
    12. Jordan DB, Braker JD (2010) β-d -Xylosidase from / Selenomonas ruminantium: role of glutamate 186 in catalysis revealed by site-directed mutagenesis, alternate substrates, and active-site inhibitor. Appl Biochem Biotechnol 161:395-10. doi:10.1007/s12010-009-8874-7 CrossRef
    13. Jordan DB, Braker JD (2011) Opposing influences by subsite ? and subsite +1 residues on relative xylopyranosidase/arabinofuranosidase activities of bifunctional β-d -xylosidase/α-l -arabinofuranosidase. Biochim Biophys Acta 1814:1648-657. doi:10.1016/j.bbapap.2011.08.010 CrossRef
    14. Jordan DB, Li X-L (2007) Variation in relative substrate specificity of bifunctional β-d -xylosidase/α-l -arabinofuranosidase by single-site mutations: roles of substrate distortion and recognition. Biochim Biophys Acta 1774:1192-198. doi:10.1016/j.bbapap.2007.06.010 CrossRef
    15. Jordan DB, Wagschal K (2010) Properties and applications of microbial β-d -xylosidases featuring the catalytically efficient enzyme from / Selenomonas ruminantium. Appl Microbiol Biotechnol 86:1647-658. doi:10.1007/s00253-010-2538-y CrossRef
    16. Jordan D, Li X-L, Dunlap C, Whitehead T, Cotta M (2007) Structure–function relationships of a catalytically efficient β-d -xylosidase. Appl Biochem Biotechnol 141:51-6. doi:10.1007/s12010-007-9210-8 CrossRef
    17. Jordan DB, Mertens JA, Braker JD (2009) Aminoalcohols as probes of the two-subsite active site of β-d -xylosidase from / Selenomonas ruminantium. Biochim Biophys Acta 1794:144-58. doi:10.1016/j.bbapap. 2008.09.015 CrossRef
    18. Jordan DB, Wagschal K, Fan Z, Yuan L, Braker JD, Heng C (2011) Engineering lower inhibitor affinities in β-d -xylosidase of / Selenomonas ruminantium by site-directed mutagenesis of Trp145. J Ind Microbiol Biotechnol 38:1821-835. doi:10.1007/s10295-011-0971-2 CrossRef
    19. Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241-52. doi:10.1042/BJ20111922 CrossRef
    20. Leatherbarrow RJ (2001) GraFit version 5. Erithacus Software Limited, Horley, UK
    21. Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487-22. doi:10.1146/annurev.biochem.68.1.487 CrossRef
    22. Rasmussen LE, S?rensen HR, Vind J, Viks?-Nielsen A (2006) Mode of action and properties of the β-xylosidases from / Talaromyces emersonii and / Trichoderma reesei. Biotechnol Bioeng 94:869-76. doi:10.1002/bit.20908 CrossRef
    23. Saha BC (2001) Purification and characterization of an extracellular β-xylosidase from a newly isolated / Fusarium verticillioides. J Ind Microbiol Biotechnol 27:241-45. doi:10.1038/sj/jim/7000189 CrossRef
    24. Saha BC (2003) Purification and properties of an extracellular β-xylosidase from a newly isolated / Fusarium proliferatum. Bioresour Technol 90:33-8. doi:10.1016/S0960-8524(03)00098-1 CrossRef
    25. Speicher KD, Kolbas O, Harper S, Speicher DW (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biol Tech 11:74-6
    26. Subramaniam S (1998) The Biology Workbench—a seamless database and analysis environment for the biologist. Proteins 32:1-. doi:10.1002/(SICI)1097-0134(19980701)32:1<1::AID-PROT1>3.0.CO;2-Q CrossRef
    27. Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW (2005) Enzyme-coupled assay for β-xylosidase hydrolysis of natural substrates. Appl Environ Microbiol 71:5318-323. doi:10.1128/AEM.71.9.5318-5323.2005 CrossRef
    28. Wagschal K, Franqui-Espiet D, Lee CC, Kibblewhite-Accinelli RE, Robertson GH, Wong DWS (2007) Genetic and biochemical characterization of an α-l -arabinofuranosidase isolated from a compost starter mixture. Enzyme Microb Technol 40:747-53. doi:10.1016/j.enzmictec.2006.06.007 CrossRef
    29. Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DWS (2009a) Purification and characterization of a glycoside hydrolase family 43 β-xylosidase from / Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155:304-13. doi:10.1007/s12010-008-8362-5 CrossRef
    30. Wagschal K, Heng C, Lee CC, Wong DWS (2009b) Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture. Appl Microbiol Biotechnol 81:855-63. doi:10.1007/s00253-008-1662-4 CrossRef
    31. Wagschal K, Jordan DB, Braker JD (2012) Catalytic properties of β-d -xylosidase XylBH43 from / Bacillus halodurans C-125 and mutant XylBH43-W147G. Process Biochem 47:366-72. doi:10.1016/j.procbio.2011.07.009 CrossRef
    32. Xu WZ, Shima Y, Negoro S, Urabe I (1991) Sequence and properties of β-xylosidase from / Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence. Eur J Biochem 202:1197-203. doi:10.1111/j.1432-1033.1991.tb16490.x CrossRef
    33. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from / Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402-410. doi:10.1016/j.biortech.2007.11.033 CrossRef
    34. Yates JR III, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426-436. doi:10.1021/ac00104a020 CrossRef
    35. Yates JR III, Morgan SF, Gatlin CL, Griffin PR, Eng JK (1998) Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. Anal Chem 70:3557-565. doi:10.1021/ac980122y CrossRef
    36. Yoshida S, Hespen CW, Beverly RL, Mackie RI, Cann IKO (2010) Domain analysis of a modular α-l -arabinofuranosidase with a unique carbohydrate binding strategy from the fiber-degrading bacterium / Fibrobacter succinogenes S85. J Bacteriol 192:5424-436. doi:10.1128/JB.00503-10 CrossRef
  • 作者单位:Douglas B. Jordan (1)
    Kurt Wagschal (2)
    Arabela A. Grigorescu (3)
    Jay D. Braker (1)

    1. USDA-ARS-National Center for Agricultural Utilization Research, Peoria, IL, 61604, USA
    2. USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA, 94710, USA
    3. Keck Biophysics Facility and Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60201, USA
  • ISSN:1432-0614
文摘
The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. β-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 is recognized as a source of highly active β-xylosidases, some of which could have practical applications. The biochemical details of four GH43 β-xylosidases (those from Alkaliphilus metalliredigens QYMF, Bacillus pumilus, Bacillus subtilis subsp. subtilis str. 168, and Lactobacillus brevis ATCC 367) are examined here. Sedimentation equilibrium experiments indicate that the quaternary states of three of the enzymes are mixtures of monomers and homodimers (B. pumilus) or mixtures of homodimers and homotetramers (B. subtilis and L. brevis). k cat and k cat/K m values of the four enzymes are higher for xylobiose than for xylotriose, suggesting that the enzyme active sites comprise two subsites, as has been demonstrated by the X-ray structures of other GH43 β-xylosidases. The K i values for d-glucose (83.3-57?mM) and d-xylose (15.6-0.0?mM) of the four enzymes are moderately high. The four enzymes display good temperature (K t 0.5?~-5?°C) and pH stabilities (>4.6 to <10.3). At pH?6.0 and 25?°C, the enzyme from L. brevis ATCC 367 displays the highest reported k cat and k cat/K m on natural substrates xylobiose (407?s?, 138?s??mM?), xylotriose (235?s?, 80.8?s??mM?), and xylotetraose (146?s?, 32.6?s??mM?).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700