High regenerative ability of tailed amphibians (Urodela) as a result of the expression of juvenile traits by mature animals
详细信息    查看全文
  • 作者:E. N. Grigoryan
  • 关键词:amphibians ; Urodela ; paedomorphosis ; regeneration
  • 刊名:Russian Journal of Developmental Biology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:47
  • 期:2
  • 页码:83-92
  • 全文大小:288 KB
  • 参考文献:Anton, G.J., Shpiller, M., and Grigoryan, E.N., DNA content in cells of cutaneous glands of Anura, Dokl. Akad. Nauk, 1993, vol. 332, no. 2, pp. 251–253.
    Avdonin, P.P., Expression of regulatory genes Fgf2, Pax6, Six3, Otx2, Pitx1 and Pitx2 in epimorphic retina regeneration in the newt Pleurodeles waltl, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: IBR RAN, 2010.
    Avdonin, P.P., Markitantova, Yu.V., Zinov’eva, R.D., and Mitashov, V.I., Expression of regulatory genes Pax6, Otx2, Six3, and FGF2 during newt retina regeneration, Biol. Bull. (Moscow), 2008, vol. 35, no. 4, pp. 355–361.CrossRef
    Avdonin, P.P., Grigoryan, E.N., and Markitantova, Yu.V., Transcriptional factor Pitx2: localization during triton retina regeneration, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 221–230.CrossRef
    Blassberg, R.A., Garza-Garcia, A., Janmohamed, A., Gates, P.B., and Brockes, J.P., Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration, J. Cell Sci., 2011, vol. 124, pp. 47–56.CrossRef PubMed PubMedCentral
    Bruckskotten, M., Looso, M., Reinhardt, R., Braun, T., and Borchardt, T., Newt-omics: a comprehensive repository for omics data from the newt Notophthalmus viridescens, Nucleic Acids Res., 2012, vol. 40, pp. D895–D900.CrossRef PubMed PubMedCentral
    Chiba, C. and Mitashov, V.I., Cellular and molecular events in the adult newt retinal regeneration, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, Ch., Ed., Kerala, India: Research Signpost, 2007, pp. 15–33.
    Denoël, M. and Joly, P., Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia: Caudata), Proc. R. Soc. Lond. Ser. B. Biol. Sci., 2000, vol. 267, pp. 1481–1485.CrossRef
    Denoël, M., Joly, P., and Whiteman, H.H., Evolutionary ecology of facultative paedomorphosis in newts and salamanders, Biol. Rev. Camb. Philos. Soc., 2005, vol. 80, no. 4, pp. 663–671.CrossRef PubMed
    ten Donkelaar, H.J., in The Central Nervous System of Vertebrates, Nieuwenhuys, R., ten Donkelaar, H.J., and Nicholson, C., Eds., London: Springer, 1998, pp. 1045–1150.
    Dowling, J.E., The Retina. An Approachable Part of the Brain, Revised Edition, Harvard: Belknap-Harvard Univ. Press, 2012.
    Du Bois, A.M. and De Beaumont, J., Intersexualité phénotypique dans la gonade mâle du triton, C. R. Soc. Biol., 1927, vol. 97, pp. 1323–1324.
    Duellman, W.E. and Trueb, L., Biology of Amphibians, Baltimore: Johns Hopkins University Press, 1994.
    Flajnik, M.F., Miler, K., and Du Pasquier, L., Evolution of the immune system, in Fundamental Immunology, 5th ed., Paul, W.E., Ed., Philadelphia: Lippincott Williams and Wilkins, 2003, pp. 519–570.
    Flament, S., Dumond, H., Chardard, D., and Chesnel, A., Lifelong testicular differentiation in Pleurodeles waltl (Amphibia, Caudata), Reprod. Biol. Endocrinol., 2009, vol. 7, p. 21.CrossRef PubMed PubMedCentral
    Garza-Garcia, A.A., Driscoll, P.C., and Brockes, J.P., Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders, Integr. Comp. Biol., 2010, vol. 50, pp. 528–535.CrossRef PubMed
    Gibbs, K.M., Chittur, S.V., and Szaro, B.G., Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis, Eur. J. Neurosci., 2011, vol. 33, pp. 9–25.CrossRef PubMed
    Godwin, J.W. and Rosenthal, N., Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success, Differentiation, 2014, vol. 87, nos. 1–2, pp. 66–75.CrossRef PubMed
    Goss, R.J., A History of Regeneration Research: Milestones in the Evolution of a Science, Goss, R.J. and Dinsmore, C.E., Eds., Cambridge. Cambridge: Univ. Press, 1991.
    Grigoryan, E.N., Cytological basics of transdifferentiation in vertebrate eye tissues, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: IDB RAS, 1998.
    Grigoryan, E.N., Alternative intrinsic cell sources for neural retina regeneration in adult urodelean amphibians, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, Ch., Ed., Kerala, India: Research Signpost, 2007, pp. 35–62.
    Grigoryan, E.N., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Davies, J., Ed., Croatia: In Tech, 2012, pp. 145–164.
    Grigoryan, E.N., Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts, Biol. Bull. (Moscow), 2015, vol. 42, no. 1, pp. 1–11.CrossRef
    Grigoryan, E.N. and Poplinskaya, V.A., Changes in the relative number of bipolar-like cells in the retina of Pleurodeles waltl as a function of age and as a result of light exposure, Russ. J. Dev. Biol., 2002, vol. 33, no. 2, pp. 85–90.CrossRef
    Grigoryan, E.N., Ivanova, I.P., and Poplinskaya, V.A., Discovery of new internal sources of the neural retina regeneration after its detachment in newts: morphological and quantitative studies, Biol. Bull. (Moscow), 1996, vol. 23, no. 3, pp. 263–274.
    Grigoryan, E.N., Markitantova, Yu.V., Avdonin, P.P., and Radugina, E.A., Study of regeneration in amphibians in age of molecular-genetic approaches and methods, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 46–62.CrossRef
    Herrick, J. and Sclavi, B., A new look at genome size, evolutionary duration and genetic variation in salamanders, Comptes Rendus Palevol., 2014, vol. 13, pp. 611–621.CrossRef
    Horner, H.A. and MacGregor, H., C-value and cell volume: their significance in the evolution and development of amphibians, J. Cell Sci., 1983, vol. 63, pp. 135–146.PubMed
    Iordanskii, N.N., Evolyutsiya zhizni (Evolution of Life), Moscow: Akademiya, 2001.
    Johnson, C.K. and Voss, S.R., Salamander paedomorphosis: linking thyroid hormone to salamander life history and life cycle evolution, Curr. Top. Dev. Biol., 2013, vol. 103, pp. 229–258.CrossRef PubMed
    Joven, A., Morona, R., Gonzalez, A., and Moreno, N., Expression patterns of Pax6 and Pax7 in the adult brain of an urodele amphibian, Pleurodeles waltl, J. Comp. Neurol.: Res. Syst. Neurosci., 2013, vol. 521, pp. 2088–2124.CrossRef
    Kaneko, Y., Hirota, K., Matsumoto, G., and Hanyu, Y., Expression pattern of a newt notch homologue in regenerating newt retina, Develop. Brain Res., 2001, vol. 128, pp. 53–62.CrossRef
    Keefe, J.R., An analysis of urodelean retinal regeneration, J. Exp. Zool., 1973, vol. 184, pp. 185–257.CrossRef PubMed
    Kumar, A., Godwin, J.W., Gates, P.B., Garza-Garcia, A.A., and Brockes, J.P., Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate, Science, 2007, vol. 318, pp. 772–777.CrossRef PubMed PubMedCentral
    Kumar, A., Delgado, J.-P., Gates, P.B., Neville, G., Forge, A., and Brockes, J.P., The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 13588–13593.CrossRef PubMed PubMedCentral
    Leghissa, S., L’evoluzione del tetto office nei bassi vertebrati (I), Arch. Ital. Anat. Embriol., 1962, vol. 67, pp. 343–413.
    Looso, M., Preussner, J., Sousounis, K., Bruckskotten, M., Michel, C.S., Lignelli, E., Reinhardt, R., Höffner, S., Krüger, M., Tsonis, P.A., Borchardt, T., and Braun, T., A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration, Genome Biol., 2013, vol. 14, no. 2, p. R16.CrossRef PubMed PubMedCentral
    Lui, K.O., Zangi, L., and Chien, K.R., Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA, in Heart Regeneration and Rejuvenation, Stem Cell Res., 2014, vol. 13, no. 3, part B, pp. 693–704.
    Maki, N., Takechi, K., Sano, S., Tarui, H., Sasai, Y., and Agata, K., Rapid accumulation of nucleostemin in nucleolus during newt regeneration, Dev. Dynam., 2007, vol. 263, pp. 941–950.CrossRef
    Maki, N., Suetsugu-Maki, R., Tarui, H., Agata, K., Del Rio-Tsonis, K., and Tsonis, P.A., Expression of stem cell pluripotency factors during regeneration in newts, Dev. Dynam., 2009, vol. 238, no. 6, pp. 1613–1616.CrossRef
    Maki, N., Suetsugu-Maki, R., Sano, S., Nakamura, K., Nishimura, O., Tarui, H., Del Rio-Tsonis, K., Ohsumi, K., Agata, K., and Tsonis, P.A., Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo, FASEB J., 2010, vol. 24, no. 9, pp. 3462–3467.CrossRef PubMed PubMedCentral
    Markitantova, Yu.V., Makar’ev, E.O., Smirnova, Yu.A., Zinov’eva, R.D., and Mitashov, V.I., Analysis of the expression pattern of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures in the newt, Biol. Bull. (Moscow), 2004, vol. 31, no. 5, pp. 4298–436.CrossRef
    Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Identification of the gene encoding nucleostemin in the eye tissues of Pleurodeles waltl, Biol. Bull. (Moscow), 2015, vol. 42, no. 5, pp. 379–386.CrossRef
    Mastellos, D.C., DeAngelis, R.A., and Lambris, J.D., Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis, Semin. Immunol., 2013, vol. 25, no. 1, pp. 29–38.CrossRef PubMed PubMedCentral
    McHedlishvili, L., Epperlein, H.H., Telzerow, A., and Tanaka, E.M., A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors, Development, 2007, vol. 134, pp. 2083–2093.CrossRef PubMed
    Mescher, A.L. and Neff, A.W., Loss regenerative capacity: a trade-off for immune specificity?, in Organ Regeneration: Hints at Immune Involvement, Cell Science (on-line Cellsciencecom/reviews2), 2004.
    Mescher, A.L. and Neff, A.W., Regenerative capacity and the developing immune system, Adv. Biochem. Eng. Biotechnol., 2005, vol. 93, pp. 39–66.PubMed
    Mitashov, V.I., Mechanisms of retina regeneration in urodeles, Int. J. Dev. Biol., 1996, vol. 40, pp. 833–844.PubMed
    Mitashov, V.I., Retinal regeneration in amphibians, Int. J. Dev. Biol., 1997, vol. 41, no. 6, pp. 893–905.PubMed
    Mitashov, V.I., Panova, I.G., and Kousoulakos, S., Transdifferentiation potential of ciliary and pigment epithelial cells in lower vertebrates and mammals, Biol. Bull. (Moscow), 2004, vol. 31, no. 4, pp. 324–331.CrossRef
    Northcutt, R.G., Evolution of the vertebrate central nervous system: patterns and processes, Am. Zool., 1984, vol. 24, pp. 701–716.CrossRef
    Northcutt, R.G., Lungfish neural characters and their bearing on sarcopterygian phylogeny, J. Morphol. Suppl., 1987, vol. 1, pp. 277–297.
    Odelberg, S.J., Cellular plasticity in vertebrate regeneration, Anat. Rec. Part B. New Anat., 2005, vol. 287, no. 1, pp. 25–35.CrossRef
    Olmo, E., Nucleotype and cell size in vertebrates: a review, Bas. Appl. Histochem., 1983, vol. 27, pp. 227–256.
    Porrello, E.R. and Olson, E.N., A neonatal blueprint for cardiac regeneration, Stem Cell Res., 2014, vol. 13, no. 3, pp. 556–570.CrossRef PubMed PubMedCentral
    Raff, R.A. and Wray, G.A., Heterochrony: developmental mechanisms and evolutionary results, J. Evol. Biol., 1989, vol. 2, pp. 409–434.CrossRef
    Rapaport, D.H. and Stone, J., Time course of morphological differentiation of cat retinal ganglion cells: influence of soma size, J. Comp. Neurol., 1983, vol. 221, pp. 42–52.
    Roth, G., Dicke, U., and Nishikawa, K.C., How do ontogeny, morphology and physiology of sensory systems constrain and direct the evolution of amphibians?, Am. Natur. Suppl., 1992, vol. 139, pp. S105–S124.CrossRef
    Roth, G., Nishikawa, K.C., Naujoks-Manteuffel, C., Schmidt, A., and Wake, D.B., Paedomorphosis and simplification in the nervous system of salamanders, Brain Behav. Evol., 1993, vol. 42, pp. 137–170.CrossRef PubMed
    Roth, G., Blanke, J., and Wakeo, D.B., Cell size predicts morphological complexity in the brains of frogs and salamanders, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 4796–4800.CrossRef PubMed PubMedCentral
    Safi, R., Vlaeminck-Guillem, V., Duffraisse, M., Seugnet, I., Plateroti, M., Margotat, A., Duterque-Coquillaud, M., Crespi, E.J., Denver, R.J., Demeneix, B., and Laudet, V., Paedomorphosis revisited: thyroid hormone receptors are functional in Necturus maculosus, Evol. Dev., 2006, vol. 8, no. 3, pp. 284–292.CrossRef PubMed
    Schnapp, E., Kragl, M., Rubin, L., and Tanaka, E.M., Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration, Development, 2005, vol. 132, pp. 3243–3253.CrossRef PubMed
    Seifert, A.W., Monaghan, J.R., Smith, M.D., Pasch, B., Stier, A.C., Michonneau, F., and Maden, M., The influence of fundamental traits on mechanisms controlling appendage regeneration, Biol. Rev., 2011, vol. 87, no. 2, pp. 330–345.CrossRef PubMed
    Seifert, A.W. and Voss, S.R., Revisiting the relationship between regenerative ability and aging, BMC Biol., 2013, vol. 11, no. 2, pp. 1–4.
    Sessions, S.K., Genome size, in Reference Module in Biomedical Sciences, from Brenner’s Encyclopedia of Genetics, 2nd ed., 2013, pp. 301–305.
    Sessions, S.K. and Larson, A., Developmental correlates of genome size in plathodontid salamanders and their implications for genome evolution, Evolution, 1987, vol. 41, pp. 1239–1251.CrossRef
    Smirnov, S.V., Metamorphosis in Urodela: features, mechanisms of regulation, and evolution, Zh. Obshch. Biol., 2006, vol. 67, no. 5, pp. 323–334.PubMed
    Stroeva, O.G. and Mitashov, V.I., Retinal pigment epithelium: proliferation and differentiation during development and regeneration, Int. Rev. Cytol., 1983, vol. 83, pp. 221–293.CrossRef PubMed
    Suetsugu-Maki, R., Maki, N., Nakamura, K., Sumanas, S., Zhu, J., Del Rio-Tsonis, K., and Tsonis, P.A., Lens regeneration in axolotl: new evidence of developmental plasticity, BMC Biol., 2012, vol. 10, no. 103, pp. 1–8.
    Uchida, T. and Hanaoka, K.I., The occurrence of oviform cells by hormonal injection in the regenerated testes of a newt, Cytologia, 1949, vol. 15, pp. 109–130.CrossRef
    Vorob’eva, E.I., Problema proiskhozhdeniya nazemnykh pozvonochnykh (The Origin of Terrestrial Vertebrates), Moscow: Nauka, 1992.
  • 作者单位:E. N. Grigoryan (1)

    1. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Developmental Biology
    Animal Anatomy, Morphology and Histology
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3326
文摘
The highest potencies of regeneration in tailed amphibians in comparison with the abilities of organ and tissue restoration in other vertebrates represent the goal of longstanding and intense studies. Accumulated information can half-open some mysteries of cellular and molecular fundamentals of regeneration in Urodela, but it does not explain the maintenance of regenerative abilities in mature, adult animals. The information summarized in the review suggests that the paedomorphosis inherent in this animal group determines the keeping of the juvenile state on all levels of organization—from organismic to molecular. This, in turn, permits and eases initiation and development of regenerative responses to trauma, right up to the epimorphic regeneration of whole organs. As an example, we have traced paedomorphosis-associated cellular and molecular specificities of urodelean eye and brain tissues, which could possibly play a permissive role in their complete regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700