Capacitive Measurement of ECG for Ubiquitous Healthcare
详细信息    查看全文
  • 作者:Yong Gyu Lim (1)
    Jeong Su Lee (2)
    Seung Min Lee (3)
    Hong Ji Lee (2)
    Kwang Suk Park (4)
  • 关键词:Capacitive measurement ; Capacitive electrode ; Fully non ; contact ECG ; Capacitive ground ; Wearable ECG ; Non ; intrusive ECG ; Ubiquitous Healthcare
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:42
  • 期:11
  • 页码:2218-2227
  • 全文大小:961 KB
  • 参考文献:1. Alizadeh-Taheri, B., R. L. Smith, and R. T. Knight. An active, microfabricated, scalp electrode array for EEG recording. / Sens. Actuators A 54:606鈥?11, 1996. CrossRef
    2. Baek, H. J., H. S. Kim, J. Heo, Y. G. Lim, and K. S. Park. Brain鈥揷omputer interfaces using capacitive measurement of visual or auditory steady-state responses. / J. Neural Eng. 10:24001, 2013. CrossRef
    3. Baek, H. J., J. S. Kim, K. K. Kim, and K. S. Park. System for unconstrained ECG measurement on a toilet seat using capacitive coupled electrodes: the efficacy and practicality. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008 (EMBS 2008), 2008, pp. 2326鈥?328.
    4. Baek, H. J., H. B. Lee, J. S. Kim, J. M. Choi, K. K. Kim, and K. S. Park. Nonintrusive biological signal monitoring in a car to evaluate a driver鈥檚 stress and health state. / Telemed. e-Health 15:182鈥?89, 2009. CrossRef
    5. Baek, H. J., H. J. Lee, Y. G. Lim, and K. S. Park. Comparison of pre-amplifier topologies for use in brain-computer interface with capacitively-coupled EEG electrodes. / Biomed. Eng. Lett. 3:158鈥?69, 2013.
    6. Chi, Y. M., and G. Cauwenberghs. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 (EMBS 2009), 2009, pp. 4218鈥?221.
    7. Chi, Y. M., and G. Cauwenberghs. Wireless non-contact EEG/ECG electrodes for body sensor networks. In: 2010 International Conference on Body Sensor Networks (BSN), 2010, pp. 297鈥?01.
    8. Chi, Y. M., T.-P. Jung, and G. Cauwenberghs. Dry-contact and noncontact biopotential electrodes: methodological review. / Biomed. Eng. IEEE Rev. 3:106鈥?19, 2010. CrossRef
    9. Chi, Y. M., C. Maier, and G. Cauwenberghs. Integrated ultra-high impedance front-end for non-contact biopotential sensing. In: IEEE Biomedical Circuits and Systems Conference, 2011 (BioCAS 2011), 2011, pp. 456鈥?59.
    10. Chi, Y. M., Y.-T. Wang, Y. Wang, C. Maier, T.-P. Jung, and G. Cauwenberghs. Dry and noncontact EEG sensors for mobile brain鈥揷omputer interfaces. / Neural Syst. Rehabil. Eng. IEEE Trans. 20:228鈥?35, 2012. CrossRef
    11. Curtis, H. L. Shielding and guarding electrical apparatus used in measurements-general principles. / Am. Inst. Electr. Eng. Trans. 48:1263鈥?269, 1929. CrossRef
    12. David, R. M., and W. M. Portnoy. Insulated electrocardiogram electrodes. / Med. Biol. Eng. 10:742鈥?51, 1972. CrossRef
    13. Eilebrecht, B., T. Wartzek, J. Willkomm, A. Schommartz, M. Walter, and S. Leonhardt. Motion artifact removal from capacitive ECG measurements by means of adaptive filtering. In: 5th European Conference of the International Federation for Medical and Biological Engineering, edited by 脕. Jobb谩gy. Berlin: Springer, 2012, pp. 902鈥?05.
    14. Feddes, B., L. Gourmelon, M. Meftah, and T. Ikkink. Reducing motion artefacts of capacitive sensors. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007 (EMBS 2007), 2007, p. 1532.
    15. Fonseca, C., J. P. S. Cunha, R. E. Martins, V. M. Ferreira, J. P. M. de S谩, M. A. Barbosa, and A. M. da Silva. A novel dry active electrode for EEG recording. / Biomed. Eng. IEEE Trans. 54:162鈥?65, 2007. CrossRef
    16. Gargiulo, G., P. Bifulco, R. A. Calvo, M. Cesarelli, C. Jin, and A. van Schaik. A mobile EEG system with dry electrodes. In: IEEE Biomedical Circuits and Systems Conference, 2008 (BioCAS 2008), 2008, pp. 273鈥?76.
    17. Griffith, M. E., W. M. Portnoy, L. J. Stotts, and J. L. Day. Improved capacitive electrocardiogram electrodes for burn applications. / Med. Biol. Eng. Comput. 17:641鈥?46, 1979. CrossRef
    18. Grozea, C., C. D. Voinescu, and S. Fazli. Bristle-sensors鈥攍ow-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. / J. Neural Eng. 8:25008, 2011. CrossRef
    19. Guger, C., G. Krausz, B. Z. Allison, and G. Edlinger. Comparison of dry and gel based electrodes for P300 brain鈥揷omputer interfaces. / Front. Neurosci. 6:60, 2012.
    20. Harland, C. J., T. D. Clark, and R. J. Prance. Electric potential probes-new directions in the remote sensing of the human body. / Meas. Sci. Technol. 13:163, 2002. CrossRef
    21. Harland, C. J., T. D. Clark, and R. J. Prance. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. / Appl. Phys. Lett. 81:3284鈥?286, 2002. CrossRef
    22. Ishijima, M. Monitoring of electrocardiograms in bed without utilizing body surface electrodes. / Biomed. Eng. IEEE Trans. 40:593鈥?94, 1993. CrossRef
    23. Kim, J. H., H. J. Baek, Y. G. Lim, and K. S. Park. A performance comparison of dry-foam type capacitively-coupled EEG electrodes depending on the contact area. In: 46th Conference of Korean Society of Medical & Biological Engineering, Korea, 2012, pp. 517鈥?18.
    24. Kim, K. K., Y. J. Chee, Y. G. Lim, J. W. Choi, and K. S. Park. A new method for unconstrained pulse arrival time (PAT) measurement on a chair. / J. Biomed. Eng. Res. 27:83鈥?8, 2006.
    25. Kim, K. K., Y. K. Lim, and K. S. Park. Common mode noise cancellation for electrically non-contact ECG measurement system on a chair. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005 (IEEE-EMBS 2005), 2006, pp. 5881鈥?883.
    26. Kim, J., J. Park, K. Kim, Y. Chee, Y. Lim, and K. Park. Development of a nonintrusive blood pressure estimation system for computer users. / Telemed. e-Health 13:57鈥?4, 2007. CrossRef
    27. Lagow, C. H., K. J. Sladek, and P. C. Richardson. Anodic insulated tantalum oxide electrocardiograph electrodes. / Biomed. Eng. IEEE Trans. 18:162鈥?64, 1971. CrossRef
    28. Lee, S. M., K. S. Sim, K. K. Kim, Y. G. Lim, and K. S. Park. Thin and flexible active electrodes with shield for capacitive electrocardiogram measurement. / Med. Biol. Eng. Comput. 48:447鈥?57, 2010. CrossRef
    29. Lim, Y. G., K. H. Hong, K. K. Kim, J. H. Shin, S. M. Lee, G. S. Chung, H. J. Baek, D.-U. Jeong, and K. S. Park. Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. / Biomed. Eng. Lett. 1:11鈥?0, 2011. CrossRef
    30. Lim, Y. G., K. K. Kim, and S. Park. ECG measurement on a chair without conductive contact. / Biomed. Eng. IEEE Trans. 53:956鈥?59, 2006. CrossRef
    31. Lim, Y. G., K. K. Kim, and K. S. Park. ECG recording on a bed during sleep without direct skin-contact. / Biomed. Eng. IEEE Trans. 54:718鈥?25, 2007. CrossRef
    32. Lopez, A., and P. C. Richardson. Capacitive electrocardiographic and bioelectric electrodes. / Biomed. Eng. IEEE Trans. 16:99, 1969. CrossRef
    33. Maruyama, T., M. Makikawa, N. Shiozawa, and Y. Fujiwara. ECG measurement using capacitive coupling electrodes for man-machine emotional communication. In: IEEE/ICME International Conference on Complex Medical Engineering, 2007 (CME 2007), 2007, pp. 378鈥?83.
    34. Matsuo, T., K. Iinuma, and M. Esashi. A barium-titanate-ceramics capacitive-type EEG electrode. / Biomed. Eng. IEEE Trans. 188:299鈥?00, 1973. CrossRef
    35. Matteucci, M., R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, E. Snidero, L. Gavioli, and M. Sancrotti. Micropatterned dry electrodes for brain鈥揷omputer interface. / Microelectron. Eng. 84:1737鈥?740, 2007. CrossRef
    36. Oehler, M., P. Neumann, M. Becker, G. Curio, and M. Schilling. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008 (EMBS 2008), 2008, pp. 4495鈥?498.
    37. Ott, H. W. Noise reduction techniques in electronic systems. New York: Wiley, 1988.
    38. Ottenbacher, J., and S. Heuer. Motion artefacts in capacitively coupled ECG electrodes. In: World Congress on Medical Physics and Biomedical Engineering, September 7鈥?2, 2009, Munich, Germany, 2010, pp. 1059鈥?062.
    39. Pallas-Areny, R. Interference-rejection characteristics of biopotential amplifiers: a comparative analysis. / Biomed. Eng. IEEE Trans. 35:953鈥?59, 1988. CrossRef
    40. Peng, G., M. Sterling, and M. Bocko. Non-contact, capacitive biosensor electrodes for electrostatic charge reduction. In: 2013 IEEE Sensors, 2013, pp. 1鈥?.
    41. Prance, R. J., A. Debray, T. D. Clark, H. Prance, M. Nock, C. J. Harland, and A. J. Clippingdale. An ultra-low-noise electrical-potential probe for human-body scanning. / Meas. Sci. Technol. 11:291, 2000. CrossRef
    42. Schalk, G., D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. BCI2000: a general-purpose brain-computer interface (BCI) system. / Biomed. Eng. IEEE Trans. 51:1034鈥?043, 2004. CrossRef
    43. Searle, A., and L. Kirkup. A direct comparison of wet, dry and insulating bioelectric recording electrodes. / Physiol. Meas. 21:271, 2000. CrossRef
    44. Shin, J. H., K. M. Lee, and K. S. Park. Non-constrained monitoring of systolic blood pressure on a weighing scale. / Physiol. Meas. 30:679, 2009. CrossRef
    45. Spinelli, E., M. Haberman, P. Garc铆a, and F. Guerrero. A capacitive electrode with fast recovery feature. / Physiol. Meas. 33:1277, 2012. CrossRef
    46. Taheri, B. A., R. T. Knight, and R. L. Smith. A dry electrode for EEG recording. / Electroencephalogr. Clin. Neurophysiol. 90:376鈥?83, 1994. CrossRef
    47. Tamura, T., T. Togawa, M. Ogawa, and M. Yoda. Fully automated health monitoring system in the home. / Med. Eng. Phys. 20:573鈥?79, 1998. CrossRef
    48. Ueno, A., Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, and Y. Ishiyama. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a preliminary study. / Biomed. Eng. IEEE Trans. 54:759鈥?66, 2007. CrossRef
    49. Walter, M., B. Eilebrecht, T. Wartzek, and S. Leonhardt. The smart car seat: personalized monitoring of vital signs in automotive applications. / Pers. Ubiquitous Comput. 15:707鈥?15, 2011. CrossRef
    50. Wartzek, T., T. Lammersen, B. Eilebrecht, M. Walter, and S. Leonhardt. Triboelectricity in capacitive biopotential measurements. / Biomed. Eng. IEEE Trans. 58:1268鈥?277, 2011. CrossRef
    51. Winter, B. B., and J. G. Webster. Reductionl of interference due to common mode voltage in biopotential amplifiers. / Biomed. Eng. IEEE Trans. 30:58鈥?2, 1983. CrossRef
    52. Winter, B. B., and J. G. Webster. Driven-right-leg circuit design. / Biomed. Eng. IEEE Trans. 30:62鈥?6, 1983. CrossRef
    53. Zander, T. O., M. Lehne, K. Ihme, S. Jatzev, J. Correia, C. Kothe, B. Picht, and F. Nijboer. A dry EEG-system for scientific research and brain鈥揷omputer interfaces. / Front. Neurosci. 5:53, 2011. CrossRef
  • 作者单位:Yong Gyu Lim (1)
    Jeong Su Lee (2)
    Seung Min Lee (3)
    Hong Ji Lee (2)
    Kwang Suk Park (4)

    1. Department of Oriental Biomedical Engineering, Sangji University, Wonju, 220-702, Korea
    2. Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 110-799, Korea
    3. Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, 136-703, Korea
    4. Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 110-799, Korea
  • ISSN:1573-9686
文摘
The technology for measuring ECG using capacitive electrodes and its applications are reviewed. Capacitive electrodes are built with a high-input-impedance preamplifier and a shield on their rear side. Guarding and driving ground are used to reduce noise. An analysis of the intrinsic noise shows that the thermal noise caused by the resistance in the preamplifier is the dominant factor of the intrinsic noise. A fully non-contact capacitive measurement has been developed using capacitive grounding and applied to a non-intrusive ECG measurement in daily life. Many ongoing studies are examining how to enhance the quality and ease of applying electrodes, thus extending their applications in ubiquitous healthcare from attached-on-object measurements to wearable or EEG measurements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700