Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats
详细信息    查看全文
  • 作者:Miriam S. W. Wisniewski ; Milena Carvalho-Silva ; Lara M. Gomes…
  • 关键词:Maple syrup urine disease ; α ; ketoisocaproic acid ; Brain ; derived neurotrophic factor ; Nerve growth factor
  • 刊名:Metabolic Brain Disease
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:31
  • 期:2
  • 页码:377-383
  • 全文大小:406 KB
  • 参考文献:Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84. doi:10.​1016/​j.​brainres.​2010.​02.​018 CrossRef PubMed
    Araujo P et al. (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537CrossRef PubMed
    Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23:71–80. doi:10.​1007/​s11011-007-9077-y CrossRef PubMed
    Barschak AG et al. (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466. doi:10.​1016/​j.​clinbiochem.​2008.​12.​005 CrossRef PubMed
    Belrose JC, Masoudi R, Michalski B, Fahnestock M (2014) Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies. Neurobiol Aging 35:926–933. doi:10.​1016/​j.​neurobiolaging.​2013.​08.​029 CrossRef PubMed
    Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937CrossRef PubMed
    Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167CrossRef PubMed
    Canossa M, Griesbeck O, Berninger B, Campana G, Kolbeck R, Thoenen H (1997) Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc Natl Acad Sci U S A 94:13279–13286CrossRef PubMed PubMedCentral
    Canossa M, Gartner A, Campana G, Inagaki N, Thoenen H (2001) Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. The EMBO journal 20:1640–1650. doi:10.​1093/​emboj/​20.​7.​1640 CrossRef PubMed PubMedCentral
    Cellerino A, Carroll P, Thoenen H, Barde YA (1997) Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci 9:397–408. doi:10.​1006/​mcne.​1997.​0641 CrossRef PubMed
    Chan JR et al. (2004) NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–191. doi:10.​1016/​j.​neuron.​2004.​06.​024 CrossRef PubMed PubMedCentral
    Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp. 1971–2005
    Chuang DT, Wynn M, Shih VE (2008) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WL, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp. 1971–2005
    de Castro VV, de Boer MA, Diligenti F, Brinco F, Mallmann F, Mello CF, Wajner M (2004) Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacol Biochem Behav 77:183–190CrossRef
    Du Y, Fischer TZ, Clinton-Luke P, Lercher LD, Dreyfus CF (2006) Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Mol Cell Neurosci 31:366–375. doi:10.​1016/​j.​mcn.​2005.​11.​001 CrossRef PubMed
    Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. J Neurochem 82:1058–1064CrossRef PubMed
    Gelfo F, Tirassa P, De Bartolo P, Caltagirone C, Petrosini L, Angelucci F (2011) Brain and serum levels of nerve growth factor in a rat model of Alzheimer's disease. J Alzheimer's disease : JAD 25:213–217. doi:10.​3233/​JAD-2011-110047 PubMed
    Glaser V et al. (2010) The intra-hippocampal leucine administration impairs memory consolidation and LTP generation in rats. Cell Mol Neurobiol 30:1067–1075. doi:10.​1007/​s10571-010-9538-4 CrossRef PubMed
    Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H (1983) NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res 285:45–52CrossRef PubMed
    Gu H, Long D, Song C, Li X (2009) Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion. Neurosci Lett 453:204–209. doi:10.​1016/​j.​neulet.​2009.​02.​027 CrossRef PubMed
    Haddad JJ, Land SC (2002) Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. Br J Pharmacol 135:520–536. doi:10.​1038/​sj.​bjp.​0704467 CrossRef PubMed PubMedCentral
    Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57:846–851CrossRef PubMed
    Howell RK, Lee M (1963) Influence of alpha-ketoacids on the respiration of brain in vitro. Proc Soc Exp Biol Med 113:660–663CrossRef PubMed
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.​1146/​annurev.​neuro.​24.​1.​677 CrossRef PubMed PubMedCentral
    Iwata E, Asanuma M, Nishibayashi S, Kondo Y, Ogawa N (1997) Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells Brain research. Mol Brain Res 50:213–220CrossRef PubMed
    Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399. doi:10.​1007/​s00234-003-0955-7 CrossRef PubMed
    Jean YY, Lercher LD, Dreyfus CF (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42. doi:10.​1017/​S1740925X0900005​2 CrossRef PubMed
    Jouvet P, Kozma M, Mehmet H (2000a) Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci 926:116–121CrossRef PubMed
    Jouvet P et al. (2000b) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11:1919–1932CrossRef PubMed PubMedCentral
    Klee D et al. (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36:945–953. doi:10.​1007/​s10545-012-9582-y CrossRef PubMed
    Klein RL, Hirko AC, Meyers CA, Grimes JR, Muzyczka N, Meyer EM (2000) NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats. Brain Res 875:144–151CrossRef PubMed
    Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.​1126/​science.​1065057 CrossRef PubMed
    Lim KC, Lim ST, Federoff HJ (2003) Neurotrophin secretory pathways and synaptic plasticity. Neurobiol Aging 24:1135–1145CrossRef PubMed
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
    Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614. doi:10.​1038/​nrn1726 CrossRef PubMed
    Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312–323. doi:10.​1016/​j.​nlm.​2007.​08.​018 CrossRef PubMed PubMedCentral
    Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors. Trends Neurosci 15:323–331CrossRef PubMed
    Mendell LM, Munson JB, Arvanian VL (2001) Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol 533:91–97CrossRef PubMed PubMedCentral
    Mescka C et al. (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28. doi:10.​1007/​s11011-011-9238-x CrossRef PubMed
    Mescka CP et al. (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24. doi:10.​1016/​j.​ijdevneu.​2012.​10.​109 CrossRef PubMed
    Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV (1997) Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci Off J Soc Neurosci 17:8476–8490
    Mu JS, Li WP, Yao ZB, Zhou XF (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 835:259–265CrossRef PubMed
    Mufson EJ et al. (2003) Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease. Arch Neurol 60:1143–1148. doi:10.​1001/​archneur.​60.​8.​1143 CrossRef PubMed
    Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63:71–124CrossRef PubMed
    Nagahara AH et al. (2009) Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Exp Neurol 215:153–159. doi:10.​1016/​j.​expneurol.​2008.​10.​004 CrossRef PubMed PubMedCentral
    Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates vol 2. Academic Press, San Diego
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649CrossRef PubMed
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. J Neurochem 93:1412–1421. doi:10.​1111/​j.​1471-4159.​2005.​03135.​x CrossRef PubMed
    Rantamaki T et al. (2013) The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease. PLoS One 8:e68722. doi:10.​1371/​journal.​pone.​0068722 CrossRef PubMed PubMedCentral
    Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564. doi:10.​1098/​rstb.​2006.​1894 CrossRef
    Ribeiro CA et al. (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33:114–124. doi:10.​1007/​s11064-007-9423-9 CrossRef PubMed
    Scaini G et al. (2012a) Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 45:279–286. doi:10.​1007/​s12035-012-8243-3 CrossRef PubMed
    Scaini G et al. (2012b) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106:169–174. doi:10.​1016/​j.​ymgme.​2012.​04.​009 CrossRef PubMed
    Scaini G et al. (2012c) Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res 231:92–96. doi:10.​1016/​j.​bbr.​2012.​03.​004 CrossRef PubMed
    Scaini G et al. (2013a) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730. doi:10.​1007/​s10545-012-9549-z CrossRef PubMed
    Scaini G et al. (2013b) Acute and chronic administration of the branched-chain amino acids decreases nerve growth factor in rat hippocampus. Mol Neurobiol 48:581–589. doi:10.​1007/​s12035-013-8447-1 CrossRef PubMed
    Scaini G et al. (2015) Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain. Neurochem Res 40:885–893. doi:10.​1007/​s11064-015-1541-1 CrossRef PubMed
    Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75. doi:10.​1016/​j.​ymgme.​2004.​01.​016 CrossRef PubMed
    Sgaravatti AM et al. (2003) Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238CrossRef PubMed
    Snyderman SE, Norton PM, Roitman E, Holt LE, Jr. (1964) Maple Syrup Urine Disease, with Particular Reference to Dietotherapy. Pediatrics 34:454–472PubMed
    Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. doi:10.​1146/​annurev.​neuro.​24.​1.​1217 CrossRef PubMed
    Soule J, Messaoudi E, Bramham CR (2006) Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 34:600–604. doi:10.​1042/​BST0340600 CrossRef PubMed
    Taketomi T, Kunishita T, Hara A, Mizushima S (1983) Abnormal protein and lipid compositions of the cerebral myelin of a patient with maple syrup urine disease. Jpn J Exp Med 53:109–116PubMed
    Tavares RG, Santos CE, Tasca CI, Wajner M, Souza DO, Dutra-Filho CS (2000) Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci 181:44–49CrossRef PubMed
    Taylor S, Srinivasan B, Wordinger RJ, Roque RS (2003) Glutamate stimulates neurotrophin expression in cultured Muller cells. Brain Res Mol Brain Res 111:189–197CrossRef PubMed
    Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135CrossRef PubMed
    Tribble D, Shapira R (1983) Myelin proteins: degradation in rat brain initiated by metabolites causative of maple syrup urine disease. Biochem Biophys Res Commun 114:440–446CrossRef PubMed
    Tyler WJ, Perrett SP, Pozzo-Miller LD (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8:524–531CrossRef PubMed PubMedCentral
    Vasques VC, Brinco F, Wajner M (2005) Intrahippocampal administration of the branched-chain alpha-hydroxy acids accumulating in maple syrup urine disease compromises rat performance in aversive and non-aversive behavioral tasks. J Neurol Sci 232:11–21. doi:10.​1016/​j.​jns.​2004.​12.​015 CrossRef
    Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M (2006) Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biol 35:187–201. doi:10.​1007/​s11068-007-9011-6 CrossRef PubMed
    Vondran MW, Clinton-Luke P, Honeywell JZ, Dreyfus CF (2010) BDNF+/− mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia 58:848–856. doi:10.​1002/​glia.​20969 PubMed PubMedCentral
    Wajner M, Vargas CR (1999) Reduction of plasma concentrations of large neutral amino acids in patients with maple syrup urine disease during crises. Arch Dis Child 80:579CrossRef PubMed PubMedCentral
    Wajner M, Coelho DM, Barschak AG, Araujo PR, Pires RF, Lulhier FL, Vargas CR (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23:505–512CrossRef PubMed
    Walsh KS, Scott MN (2010) Neurocognitive profile in a case of maple syrup urine disease. Clin Neuropsychol 24:689–700. doi:10.​1080/​1385404090352727​9 CrossRef PubMed
    Walsh GS, Krol KM, Crutcher KA, Kawaja MD (1999) Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. The J Neurosci Official J Soc Neurosci 19:4155–4168
    Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS (2010) Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18:186–202. doi:10.​1159/​000323170 CrossRef PubMed
    Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322. doi:10.​1002/​dneu.​20765 PubMed PubMedCentral
    Zielke HR, Huang Y, Tildon JT, Zielke CL, Baab PJ (1996) Elevation of amino acids in the interstitial space of the rat brain following infusion of large neutral amino and keto acids by microdialysis: alpha-ketoisocaproate infusion. Dev Neurosci 18:420–425CrossRef PubMed
    Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354CrossRef PubMed
    Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405. doi:10.​1007/​s10571-006-9045-9 CrossRef PubMed
  • 作者单位:Miriam S. W. Wisniewski (1) (2)
    Milena Carvalho-Silva (1) (2)
    Lara M. Gomes (1) (2)
    Hugo G. Zapelini (3)
    Patrícia F. Schuck (3)
    Gustavo C. Ferreira (4)
    Giselli Scaini (1) (2)
    Emilio L. Streck (1) (2)

    1. Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
    2. Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
    3. Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
    4. Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
    Biochemistry
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7365
文摘
Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700