Clustering of mining-induced seismic events in equivalent dimension spaces
详细信息    查看全文
  • 作者:Grzegorz Lizurek (1)
    Stanis?aw Lasocki (1)
  • 关键词:Mining ; induced seismicity ; Clustering ; Equivalent dimensions ; Fractal dimension ; Source mechanism
  • 刊名:Journal of Seismology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:18
  • 期:3
  • 页码:543-563
  • 全文大小:
  • 参考文献:1. Andrews DJ (1986) Objective determination of source parameters and similarity of earthquakes of different size. In: Das S, Boatwright J and Scholz CH (eds.), Earthquake Source Mechanics, 259-267, Geophysical Monograph Series 37 (Maurice Ewing Volume 6), Am. Geophys. Union, Washington, D.C.
    2. Baiesi M, Paczuski M (2004) Scalefree networks of earthquakes and aftershocks. Phys Rev E, 69, 066106. doi:10.1103/PhysRevE.69.066106
    3. Bonnet E, Bour O, Odling EN, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fractal systems in geological media. Rev Geophys 39:347-83 CrossRef
    4. Botev IZ, Grotowski FJ, Kroese PD (2010) Kernel density estimation via diffusion. Ann Stat 38(5):2916-957. doi:10.1214/10-AOS799 CrossRef
    5. Bowman AW, Hall P, Titterington DM (1984) Cross-validation in non-parametric estimation of probabilities and probability densities. Biometrika 71:341-51. doi:10.1093/biomet/71.2.341 CrossRef
    6. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Bull Seismol Soc Am 74:1615-621
    7. Cesca S, Rohr A, Dahm T (2013) Discrimination of induced seismicity by full moment tensor inversion and decomposition. J Seismol 17:147-63. doi:10.1007/s10950-012-9305-8 CrossRef
    8. Console R, Murru M, Catalli F, Falcone G (2007) Real time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law: comparison with a purely stochastic ETAS model. Seismol Res Lett 78(1):49-6 CrossRef
    9. Durrheim RJ, Cichowicz A, Ebrahim-Trollope R, Essrich F, Goldbach O, Linzer LM, Spottiswoode SM and Stankiewicz T (2007) Guidelines, standards and best practice for seismic hazard assessment and rockburst risk management in South African mines, in / Proc. 4th Int. Seminar on Deep and High Stress Mining (ed. Potvin Y), Australian Centre for Geomechanics, Perth Australia . pp. 249-261
    10. Gibowicz SJ (1997) An anatomy of a seismic sequence in a deep gold mine. Pure Appl Geophys 150:393-14. doi:10.1007/s000240050084 CrossRef
    11. Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic, San Diego
    12. Gibowicz SJ, Lasocki S (2001) Seismicity induced by mining: Ten years later. Adv Geophys 44:39-81. doi:10.1016/S0065-2687(00)80007-2 CrossRef
    13. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D Nonlinear Phenom 9(1-):189-08. doi:10.1016/0167-2789(83)90298-1 CrossRef
    14. Helmstetter A, Sornette D (2003) Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity. J Geophys Res 108(B10):2482. doi:10.1029/2003JB002485 CrossRef
    15. Idziak A, Sagan G, Zuberek WM (1991) The analysis of energy distribution of seismic events from the Upper Silesian Coal Basin. Publ Inst Geophys Pol Acad Sci M-15(235):163-82 (in Polish)
    16. Johnston JC, Einstein HH (1990) A survey of mining associated rockbursts. In: Fairhurst C (ed) Rockbursts and Seismicity in Mines. Balkema, Rotterdam, pp 121-28
    17. KGHM Polska Mied? SA (2011) http://www.kghm.pl/index.dhtmlcategory_id=261&lang=en, Accessed 20 Jul 2011. Official website of the company
    18. Kijko A (1997) Keynote lecture: seismic hazard assessment in mines. In: Gibowicz SJ, Lasocki S (eds) Rockbursts and Seismicity in Mines. A.A. Balkema, Rotterdam, pp 247-56
    19. Kijko A, Funk CW (1996) Space-time interaction amongst clusters of mining induced seismicity. Pure Appl Geophys 147:277-88. doi:10.1007/BF00877483 CrossRef
    20. Kijko A, Drz??la B, Mendecki A (1985) Why the extremal seismic events distribution have the bimodal character? Acta Mont 71:225-44 (in Polish)
    21. Kijko A, Drze?la B, Stankiewicz T (1987) Bimodal character of extreme seismic events in Polish mines. Acta Geophys Pol 35:157-66
    22. Kijko A, Lasocki S, Graham G (2001) Nonparametric seismic hazard analysis in mines. Pure Appl Geophys 158:1655-676. doi:10.1007/PL00001238 CrossRef
    23. Koz?owska M (2013) Analysis of spatial distribution of mining tremors occurring in Rudna copper mine (Poland). Acta Geophys 61(5):1156-169 CrossRef
    24. Kwa?niewski M (2007) Mechanical behaviour of rocks under true triaxial compression conditions—volumetric strain and dilatancy. Arch Min Sci 52(3):409-35
    25. Kwa?niewski M, Takahashi M & Li X (2003) Volume changes in sandstone under true triaxial compression conditions. ISRM 2003–Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy
    26. Lasocki S (1992) Non-Poissonian structure of mining induced seismicity. Acta Mont 84:51-8
    27. Lasocki S (2001) Quantitative evidences of complexity of magnitude distribution in mining induced seismicity: implications for hazard evaluation. In: van Aswegen G, Durrheim RJ, Ortlepp WD (eds) The Fifth Int. Symp. on Rockbursts and Seismicity in Mines (RaSiM 5) ‘Dynamic rock mass response to mining. South African Institute of Mining and Metallurgy, Johannesburg, pp 543-50
    28. Lasocki S (2005) Probabilistic analysis of seismic hazard posed by mining induced events. Controlling Seismic Risk, Proc. Sixth Int. Symp. on Rockburst and Seismicity in Mines 9-11 March 2005, Australia (Potvin Y, Hudyma M, eds.), Australian Centre for Geomechanics, Nedlands, pp. 151-156
    29. Lasocki S (2009) Studies of clustering of seismic events in equivalent dimensions before the strong seismic event ( / in Polish). Geologia 35(2009):512-22
    30. Lasocki S (2014) Transformation to equivalent dimensions—a new methodology to study earthquake clustering, GJI doi:10.1093/gji/ggu062 (in press)
    31. Le?niak A, Pszczo?a G (2008) Combined mine tremors source locations and error evaluation in the Lubin copper mine (Poland). Tectonophysics 456:16-7. doi:10.1016/j.tecto.2007.04.012 CrossRef
    32. Marcak H (2013) Cycles in mining seismicity. J Seismol 17(3):961-74 CrossRef
    33. McGarr A, Simpson D (1997) Keynote lecture: a broad look at induced and triggered seismicity. In: Gibowicz SJ, Lasocki S (eds) Rockbursts and Seismicity in Mines. Balkema, Rotterdam, pp 385-96
    34. Mendecki A (2008) Forecasting seismic hazard in mines, in / Proc. 1st Southern Hemisphere Int. Rock Mechanics Symp (eds. Potvin Y, Carter J, Diskin A and Jeffrey R), Australian Centre for Geomechanics, Perth, pp. 55-69
    35. Muller DR, Landgrebe WCT (2012) The link between great earthquakes and the subduction of oceanic fractures. Solid Earth 3:447-65. doi: 10.5194/se-3-447-2012
    36. Orlecka-Sikora B (2010) The role of static stress transfer in mining induced seismic events occurrence, a case study of the Rudna mine in the Legnica-Glogow copper district in Poland. Geophys J Int 182:1087-095. doi:10.1111/j.1365-246X.2010.04672.x CrossRef
    37. Orlecka-Sikora B, Lasocki S (2002) Clustered structure of seismicity from the Legnica–G?ogów copper district. Publ Inst Geophys Pol Acad Sci M-24(340):105-19 (in Polish)
    38. Orlecka-Sikora B, Lasocki S (2005) Nonparametric characterization of mining induced seismic sources. The Sixth International Symposium on Rockbursts and Seismicity in Mines “Controlling Seismic Risk-Proceedings (Potvin Y, Hudyma M eds.) ACG, Perth, 555-560
    39. Orlecka-Sikora B, Papadimitriou EE, Kwiatek G (2009) A study of the interaction among mining induced seismic events in the Legnica-Glogow Copper District, Poland, / Acta Geophys 57, doi: 10.2478/s11600-008-0085-z
    40. Orlecka-Sikora B, Lasocki S, Lizurek G, Rudzinski ? (2012) Response of seismic activity in mines to the stress changes due to mining induced strong seismic events. Int J Rock Mech Min Sci 53(2012):151-58. doi:10.1016/j.ijrmms.2012.05.010 CrossRef
    41. Rhoades DA, Evison FF (2006) The EEPAS forecasting model and the probability of moderate-to-large earthquakes in central Japan. Tectonophysics 417(1/2):119-30. doi:10.1016/j.tecto.2005.05.051 CrossRef
    42. Schorlemmer D, Gerstenberger CM (2007) RELM Testing Center. Seismol Res Lett 78(1):30-6. doi:10.1785/gssrl.78.1.30 CrossRef
    43. Silverman BW (1986) Density estimation for statistics and data analysis. Monogr CRC Press, Boca Raton, Fla CrossRef
    44. Snoke JA (1987) Stable determination of (Brune) stress drops. Bull Seismol Soc Am 77:530-38
    45. Trifu C-I, Urbancic TI, Young RP (1993) Non-similar frequency-magnitude distribution for M-lt;- seismicity. Geophys Res Lett 20(6):427-30 CrossRef
    46. Van Aswegen G (2005) Routine seismic hazard assessment in some South African mines, in Proc. 6th Int. Symp. on Rockbursts and Seismicity in Mines: Controlling Seismic Risk (eds. Potvin Y and Hudyma M), Australian Centre for Geomechanics, Perth, pp. 437-444
    47. Vavrycuk V (2005) Focal mechanisms in anisotropic media. Geophys J Int 161:334-46. doi:10.1111/j.1365-246X.2005.02585.x CrossRef
    48. W?glarczyk S, Lasocki S (2009) A studies of short and long memory in mining induced seismic process. Acta Geophys 57(3):696-15 CrossRef
    49. Wiejacz P (1992) Calculation of seismic moment tensor for mine tremors from Legnica–G?ogów Copper Basin. Acta Geophys Pol 40:103-22
  • 作者单位:Grzegorz Lizurek (1)
    Stanis?aw Lasocki (1)

    1. Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452, Warszawa, Poland
  • ISSN:1573-157X
文摘
High energy release during seismic events induced by mining operation is one of the major dangers perturbing production in underground mines. In this work, temporal changes of seismic event parameters for one of the Rudna Mine (Poland) panels are investigated. The study aim was to find whether the temporal clustering of smaller events in different parameters can be observed before and after the high energy events (Ml?≥-) in the mining panel. The method chosen for analysis was the study of temporal variation of fractal dimension of the seismic events parameter sets composed from: the interevent epicentral distance (dr), logarithm of seismic energy (lE), and interevent energy coefficient (dlE), which is the absolute difference between logarithms of energy of two consecutive events. Temporal variations study was performed in equivalent dimension (ED) space. The transformation of the seismic source parameters into ED space allowed to estimate and compare the temporal changes of the fractal dimension of different parameter spaces using the same method—correlation fractal dimension, and then easily compare the obtained temporal changes of fractal dimension of different parameter sets. The effect of grouping is expressed by decrease of fractal dimension, which is connected with the similarity of events parameter values. The temporal changes of the fractal dimension of seismicity before the strong induced events would indicate some initiation phase of the process leading to the high energy release. In the case of the studied Rudna Mine panel, the temporal behavior of the fractal dimension values in different parameter spaces before seismic events showed significant changes before three out of four events with CLVD dominant source mechanisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700