Biomechanical evaluation of four femoral fixation configurations in a simulated anterior cruciate ligament replacement using a new generation of Ligament Advanced Reinforcement System (LARS?AC)
详细信息    查看全文
  • 作者:Olivier Barbier ; Sandra Guérard
  • 关键词:ACL ; Fixation ; Strength ; Artificial ligament
  • 刊名:European Journal of Orthopaedic Surgery & Traumatology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:25
  • 期:5
  • 页码:905-911
  • 全文大小:816 KB
  • 参考文献:1.Amis A (2006) Artificial ligament. In: Walsh WR (ed) Repair and regeneration of ligaments, tendons, and joint capsule. Humana Press, Sydney, pp 233-56View Article
    2.Burks RT, Crim J, Fink BP, Boylan DN, Greis PE (2005) The effects of semitendinosus and gracilis harvest in anterior cruciate ligament reconstruction. Arthroscopy 21:1177-185PubMed View Article
    3.Nau T, Lavoie P, Duval N (2002) A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of randomised trial. J Bone Joint Surg Br 84:356-60PubMed View Article
    4.Lavoie P, Fletcher J, Duval N (2000) Patients satisfaction needs as related to knee stability and objective findings after ACL reconstruction using the LARS artificial ligament. Knee 7:157-63PubMed View Article
    5.Gao K, Chen S, Wang L, Zhang W, Kang Y, Dong Q, Zhou H, Li L (2010) Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up. Arthroscopy 26:515-23PubMed View Article
    6.Leduc S, Yahia L, Boudreault F, Fernandes JC, Duval N (1999) Mechanical evaluation of a ligament fixation for ACL reconstruction in the tibia on a canine cadaver model. Ann Chir 53(8):735-41PubMed
    7.Vaquette C, Viateau V, Guérard S, Anagnostou F, Manassero M, Castner DG, Migonney V (2013) The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration. Biomaterials 34(29):7048-063PubMed Central PubMed View Article
    8.Viateau V, Manassero M, Anagnostou F, Guérard S, Mitton D, Migonney V (2013) Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement: a 3-month and 12-month study. Arthroscopy 29(6):1079-088PubMed View Article
    9.Newman SD, Atkinson HD, Willis-Owen CA (2013) Anterior cruciate ligament reconstruction with the ligament augmentation and reconstruction system: a systematic review. Int Orthop 37:321-26PubMed Central PubMed View Article
    10.Hill CM, An YH, Young FA (2006) Tendon and ligament fixation to bone. In: Walsh WR (ed) Repair and regeneration of ligaments, tendons, and joint capsule. Humana Press, Sydney, pp 257-77View Article
    11.Christel P (2004) Fixation des greffes du ligament croisé antérieur. Aspects biomécaniques. In: Landreau P, Christel P, Dijan P (eds) Pathologie ligamentaire du genou. Springer, Paris, pp 321-36
    12.Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761-74PubMed
    13.Coleridge SD, Amis AA (2004) A comparison of five tibial- fixation systems in hamstring-graft anterior cruciate ligament reconstruct. Knee Surg Sports Traumatol Arthrosc 12:391-97PubMed View Article
    14.Scheffler SU, Südkamp NP, G?ckenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304-15PubMed View Article
    15.Johnson LL, vanDyk GE (1996) Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 12:452-56PubMed View Article
    16.Brand JC Jr, Nyland J, Caborn DN, Johnson DL (2005) Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 21:911-16PubMed View Article
    17.Krupp R, Nyland J, Smith C, Nawab A, Burden R, Caborn DN (2007) Biomechanical comparison between CentraLoc and Intrafix fixation of quadrupled semitendinosus–gracilis allografts in cadaveric tibiae with low bone mineral density. Knee 14:306-13PubMed View Article
    18.Brown GA, Pe?a F, Gr?ntvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238-44PubMed View Article
    19.Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119-26PubMed View Article
    20.Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97-02PubMed View Article
    21.Weiler A, Hoffmann RF, St?helin AC, Bail HJ, Siepe CJ, Südkamp NP. (1998): Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy, 1429-37
    22.Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660-68PubMed V
  • 作者单位:Olivier Barbier (1) (2)
    Sandra Guérard (1) (4)
    Philippe Boisrenoult (3)
    Patricia Thoreux (1)

    1. Arts et Métiers ParisTech, CNRS, LBM, 151 Boulevard de l’Hopital, 75013, Paris, France
    2. Orthopedic Department, Begin Military Hospital, 69 Avenue de Paris, 94160, Saint Mandé, France
    4. Arts et Metiers ParisTech, I2M, UMR 5295, 33400, Talence, France
    3. Orthopedic Department, Mignot Hospital, 177 Rue de Versailles, 78150, Le Chesnay, France
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Surgical Orthopedics
    Traumatic Surgery
  • 出版者:Springer Paris
  • ISSN:1432-1068
文摘
Background Recent improvements in manufacturing of biomaterials have made available a new generation of artificial ligaments with better biocompatibility and design that have led to a new interest in using them for ACL reconstructions. Purpose To evaluate the biomechanical characteristics of four femoral fixations using a Ligament Advanced Reinforcement System (LARS?AC; LARS, Arc sur Tille, France) for anterior cruciate ligament replacement. Method Six femoral ACL fixations in four configurations using fresh calf femurs with an interference titanium screw inserted inside to outside, an interference titanium screw inserted outside to inside, an interference titanium screw inserted inside to outside with a staple and a new transversal cortical suspension device developed by LARS?were compared in a static loading and failure test. Output values were ultimate strength, graft slippage, mode of failure, energy to failure and stiffness. Results The transversal fixation performed with a significantly higher failure load than others (1804?N) (p?<?0.001), whereas there were no significant differences between the three fixations with interference screws. There were no significant differences of stiffness between all fixations, and the transversal device had a significantly higher graft slippage (13.1?mm) than others (all p?<?0.01). Conclusions In this in vitro evaluation, the transversal fixation exhibited better biomechanical performance under static solicitations than others. The transversal device is expected to provide better clinical results than the well-established screw system fixations for femoral ACL fixation. Clinical relevance Laboratory investigation (Level 2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700