Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China
详细信息    查看全文
  • 作者:Beiyi Xu ; Guangcai Wang
  • 关键词:Groundwater ; Surface water ; Contamination ; Stable isotopes ; Hydrochemical evolution
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:3
  • 全文大小:3,425 KB
  • 参考文献:Alleni RB, Kochs P, Chandra G (1997) Industrial organosilicon materials, their environmental entry and predicted fate. Springer, BerlinCrossRef
    Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355. doi:10.​1002/​1099-1085(20000615)14:​8<1341:​aid-hyp983>3.​0.​co;2-z CrossRef
    Ayenew T, Kebede S, Alemyahu T (2008) Environmental isotopes and hydrochemical study applied to surface water and groundwater interaction in the Awash River basin. Hydrol Process 22:1548–1563. doi:10.​1002/​hyp.​6716 CrossRef
    Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (H-2, O-18 and Sr-87/Sr-86) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2081. doi:10.​1016/​j.​apgeochem.​2005.​07.​008 CrossRef
    Beaudoin N, Saad JK, Van Laethem C, Machet JM, Maucorps J, Mary B (2005) Nitrate leaching in intensive agriculture in Northern France: effect of farming practices, soils and crop rotations. Agric Ecosyst Environ 111:292–310. doi:10.​1016/​j.​agee.​2005.​06.​006 CrossRef
    Beaumont JJ, Sedman RM, Reynolds SD, Sherman CD, Li LH, Howd RA, Sandy MS, Zeise L, Alexeeff GV (2008) Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology 19:12–23. doi:10.​1097/​EDE.​0b013e31815cea4c​ CrossRef
    Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323:178–192. doi:10.​1016/​j.​jhydrol.​2005.​08.​023 CrossRef
    Chen ZX, Cheng J, Guo PW, Lin ZY, Zhang FY (2010) Distribution characters and its control factors of stable isotope in precipitation over China. J Nanjing Inst Meteorol 33:667–679
    Chen LZ, Ma T, Du Y, Yang J, Liu L, Shan HM, Liu CF, Cai HS (2014) Origin and evolution of formation water in North China Plain based on hydrochemistry and stable isotopes (H-2, O-18, Cl-37 and Br-81). J Geochem Explor 145:250–259. doi:10.​1016/​j.​gexplo.​2014.​07.​006 CrossRef
    Chuan PC, Jiang PL, Wei GD (2009) Dissolution of aluminosilicate mineral in high-salinity formation water. Oil Gas Geol 30:662–667
    Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834CrossRef
    Dun Y, Tang CY, Shen YJ (2013) Identifying interactions between river water and groundwater in the North China Plain using multiple tracers. Environ Earth Sci 72:99–110. doi:10.​1007/​s12665-013-2989-4 CrossRef
    Eaborn (1960) Organosilicon compounds. Butterworths Scientific Publications, London
    Ettazarini S (2005) Processes of water-rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco. Environ Geol 49:293–299CrossRef
    Geng CN, Gao YJ, Li D, Jian XP, Hu QH (2014) Contamination investigation and risk assessment of molybdenum on an industrial site in China. J Geochem Explor 144, Part B:273–281. doi:10.​1016/​j.​gexplo.​2013.​12.​014 CrossRef
    Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Dhia HB (2010) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63:1355–1368. doi:10.​1007/​s12665-010-0806-x CrossRef
    Han B, He JT, Chen HH, Chen HW, Shi JH (2006) Primary study of health-based risk assessment of organic pollution in groundwater. Earth Sci Front 13:224–229
    He CL, Liu J, Li J et al (2013) Spatial distribution, source analysis, and ecological risk assessment of DDTs in typical wetland surface soils of Poyang Lake. Environ Earth Sci 68:1135–1141CrossRef
    Hu CH, Tong L, Wan QY, Li MT, Fu CY, Zhou WB (2013) Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake. Environ Chem 32:974–979CrossRef
    Khairy H, Janardhana MR (2013) Hydrogeochemistry and quality of groundwater of coastal unconfined aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ Earth Sci 71:4767–4782. doi:10.​1007/​s12665-013-2868-z CrossRef
    Kim K (2003) Long-term disturbance of groundwater chemistry following well installation. Ground Water 41:780–789CrossRef
    Kim GB, Park JH (2014) Hydrogeochemical interpretation of water seepage through a geological barrier at a reservoir boundary. Hydrol Process 28:5065–5080. doi:10.​1002/​hyp.​9964 CrossRef
    Kim K, Rajmohan N, Kim H-J, Kim S-H, Hwang G-S, Yun S-T, Gu B, Cho MJ, Lee S-H (2005) Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: a case study in Namwon, Korea. Geochem J 39:357–369CrossRef
    Lin Y, Wang GX, Pan GY (2010) A study of groundwater pollution mechanism by using isotopes and hydrochemistry. China Rural Water Hydropower 5:1–4
    Mariotti A, Landreau A, Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 58:1869–1878CrossRef
    McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117. doi:10.​1029/​2000wr900270 CrossRef
    Min JH, Yun ST, Kim K, Kim HS, Kim DJ (2003) Geologic controls on the chemical behavior of nitrate in riverside alluvial aquifers, Korea. Hydrol Process 17:1197–1211CrossRef
    Négrel P, Petelet-Giraud E, Barbier J, Gautier E (2003) Surface water–groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 277:248–267. doi:10.​1016/​s0022-1694(03)00125-2 CrossRef
    Nkotagu H (1996) Origins of high nitrate in groundwater in Tanzania. J Afr Earth Sciences 21:471–478CrossRef
    Petelet-Giraud E, Negrel P, Gourcy L, Schmidt C, Schirmer M (2007) Geochemical and isotopic constraints on groundwater-surface water interactions in a highly anthropized site. The Wolfen/Bitterfeld megasite (Mulde subcatchment, Germany). Environ Pollut 148:707–717. doi:10.​1016/​j.​envpol.​2007.​01.​030 CrossRef
    Poser A, Vogt C, Knoller K, Ahlheim J, Weiss H, Kleinsteuber S, Richnow HH (2014) Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways. Environ Sci Technol 48:9094–9102. doi:10.​1021/​es404808r CrossRef
    Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61
    Shen ZL (1999) Hydrogeochemical basis. Geological Publishing House, Beijing
    Sidle WC (1997) Environmental isotopes for resolution of hydrology problems. Environ Monit Assess 52:340–389
    Soulsby C, Malcolm R, Helliwell R, Ferrier RC, Jenkins A (2000) Isotope hydrology of the Allt a’Mharcaidh catchment, Cairngorms, Scotland: implications for hydrological pathways and residence times. Hydrol Process 14:747–762. doi:10.​1002/​(sici)1099-1085(200003)14:​4<747:​aid-hyp970>3.​0.​co;2-0 CrossRef
    Vidstrand P, Follin S, Selroos JO, Naslund JO (2014) Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol J 22:1251–1267. doi:10.​1007/​s10040-014-1164-7 CrossRef
    Wang JZ, Zang Y, Yang F et al (2015) Spatial and temporal variations of chlorophyll-a concentration from 2009 to 2012 in Poyang Lake, China. Environ Earth Sci 73:4063–4075CrossRef
    Yang T (2012) Analysis on the hydrochemical characteristics of shallow groundwater and cause of formation around Poyang Lake Area. J Anhui Agric Sci 40:405–407
    Yu MY (2004) Young County. Fang Zhi Publisher, Beijing
    Yu SY, Yang Y, Liu G (2014) Impact assessment of Three Gorges Dam’s impoundment on river dynamics in the north branch of Yangtze River estuary, China. Environ Earth Sci 72:499–509CrossRef
    Zeng ZH, Ding HW, Duo CM, Xu WD, Rao Q, Zhou FG, Liu JX (1990) Controlling factors on the formation of groundwater environment background in the area of Poyang lake, Jiangxi. Hydrogeol Eng Geol 3:46–48
    Zhou WB, Dong RB (2004) The main scientific issues on isotope hydrology study of Poyang Lake. In: Proceedings of the national hydrology symposium, pp 381–386
    Zhou X, Jing XM, Liang SH, Shen Y, Zhang HM (2010) Groundwater science monographs. Geological Publishing House, Beijing
  • 作者单位:Beiyi Xu (1)
    Guangcai Wang (1) (2)

    1. School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
    2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Major-ion and stable hydrogen and oxygen isotopic compositions were employed in this study of surface water and groundwater contaminations and their impacts on intrinsic hydrochemical evolution in the Yongxiu area, west of Poyang Lake, South China. A total of 36 samples were collected from surface water and groundwater in the study area where water pollution risk is high due to the fertilizer use for farmland and the waste drainage from a nearby silicon industry site. The results show that the surface water bodies have been badly polluted and are characterized by low pH values (minimum 2.85) and high concentrations of chemical compounds such as Cl−, Na+, NH4-N, NO3-N and TDS. Groundwater has also been polluted with the similar specific contaminates, as both surface water and groundwater may have similar contamination sources, and groundwater is recharged from the precipitation infiltration and surface water leakage as indicated by oxygen-18 and deuterium compositions due to the thin unsaturated zone in the area. The acidification and the intrusion of contamination further lead to hydrogeochemical reactions and changed hydrochemical type of groundwater from Ca–Mg–HCO3 to Ca–Mg–Na–Cl. The data evaluation methods and results of this study could be useful to the water sustainable usage management in this area and other environmental-vulnerable areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700