Central Limit Theorem for Partial Linear Eigenvalue Statistics of Wigner Matrices
详细信息    查看全文
  • 作者:Zhigang Bao (1)
    Guangming Pan (2)
    Wang Zhou (3)
  • 关键词:Wigner matrices ; Central limit theorem ; Partial linear eigenvalue statistics ; Partial sum process
  • 刊名:Journal of Statistical Physics
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:150
  • 期:1
  • 页码:88-129
  • 全文大小:1218KB
  • 参考文献:1. Anderson, T.W.: Asymptotic theory for principal component analysis. Ann. Math. Stat. 34(1), 122-48 (1963) CrossRef
    2. Bai, Z.D., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Science Press, Beijing (2006)
    3. Bai, Z.D., Wang, X.Y., Zhou, W.: CLT for linear spectral statistics of Wigner matrices. Electron. J. Probab. 14(83), 2391-417 (2009)
    4. Bai, Z.D., Yao, J.F.: On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11(6), 1059-092 (2005) CrossRef
    5. Bai, Z., Fahey, M., Golub, G., Menon, M., Richter, E.: Computing partial eigenvalue sum in electronic structure calculations. Technical Report, SCCM-98-03, Stanford Universality (Jan. 1998)
    6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
    7. Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143(1-), 1-0 (2009) CrossRef
    8. Costin, O., Lebowitz, J.L.: Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75, 69-2 (1995) CrossRef
    9. Dallaporta, S.: 2012, Eigenvalue variance bounds for Wigner and covariance random matrices. arXiv:1203.1597v3
    10. Dallaporta, S., Vu, V.: A note on the central limit theorem for the eigenvalue counting function of Wigner matrices. Electron. Commun. Probab. 16(30), 214-22 (2011)
    11. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge, UK (1995) CrossRef
    12. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 18. Am. Math. Soc., Providence (2009)
    13. Edelman, A., Arias, T., Smith, T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303-53 (1998) CrossRef
    14. Ercolani, N.M., McLaughlin, K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. IMRM 14, 755-20 (2003) CrossRef
    15. Erd?s, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37, 815-52 (2009) CrossRef
    16. Erd?s, L., Ramírez, J.A., Schlein, B., Yau, H.-T.: Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15(18), 526-03 (2010)
    17. Erd?s, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154, 341-07 (2012). arXiv:1001.3453 CrossRef
    18. Erd?s, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435-515 (2011) CrossRef
    19. Forrester, P.J., Frankel, N.E., Garoni, T.M.: Asymptotic form of the density profile for Gaussian and Laguerre random matrix ensembles with orthogonal and symplectic symmetry. J. Math. Phys. 47, 023301 (2006) CrossRef
    20. G?tze, F., Tikhomirov, A.N.: The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math. 3(4), 666-04 (2005) CrossRef
    21. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. Henri Poincaré Probab. Stat. 41(2), 151-78 (2005) CrossRef
    22. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)
    23. Kholopov, A.A., Tikhomirov, A.N., Timushev, D.A.: Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble. Theory Probab. Appl. 52(1), 171-77 (2008) CrossRef
    24. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5), 1778-840 (2009) CrossRef
    25. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, Boston (1991)
    26. Oymak, S., Hassibi, B.: New null space results and recovery thresholds for matrix rank minimization. arXiv:1011.6326 (2010)
    27. Pastur, L.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47(10), 103303 (2006) CrossRef
    28. O’Rourke, S., Renfrew, D., Soshnikov, A.: On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries. J. Theor. Probab. (2011). doi:pan class="a-plus-plus non-url-ref">10.1007/s10959-011-0396-x
    29. Shcherbina, M.: Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Math. Phys. Anal. Geom. 7(2), 176-92 (2011)
    30. Sinai, Y., Soshnikov, A.: Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Bras. Mat. 29, 1-4 (1998) CrossRef
    31. Soshinikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171-87 (2002) CrossRef
    32. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127-04 (2011) CrossRef
    33. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549-72 (2010) CrossRef
    34. Tao, T., Vu, V.: A central limit theorem for the determinant of a Wigner matrix. arXiv:1111.6300v3 (2011)
    35. Tao, T., Vu, V.: Random matrices: Sharp concentration of eigenvalues. arXiv:1201.4789v1 (2012)
  • 作者单位:Zhigang Bao (1)
    Guangming Pan (2)
    Wang Zhou (3)

    1. Department of Mathematics, Zhejiang University, Hangzhou, P.R. China
    2. Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
    3. Department of Statistics and Applied Probability, National University of Singapore, Singapore, 117546, Singapore
  • ISSN:1572-9613
文摘
In this paper, we study the complex Wigner matrices $M_{n}=\frac{1}{\sqrt{n}}W_{n}$ whose eigenvalues are typically in the interval [?,2]. Let λ 1?em class="a-plus-plus">λ 2?≤λ n be the ordered eigenvalues of?M n . Under the assumption of four matching moments with the Gaussian Unitary Ensemble (GUE), for test function f 4-times continuously differentiable on an open interval including [?,2], we establish central limit theorems for two types of partial linear statistics of the eigenvalues. The first type is defined with a threshold u in the bulk of the Wigner semicircle law as $\mathcal{A}_{n}[f; u]=\sum_{l=1}^{n}f(\lambda_{l})\mathbf{1}_{\{\lambda_{l}\leq u\}}$ . And the second one is $\mathcal{B}_{n}[f; k]=\sum_{l=1}^{k}f(\lambda_{l})$ with positive integer k=k n such that k/n?em class="a-plus-plus">y?0,1) as n tends to infinity. Moreover, we derive a weak convergence result for a partial sum process constructed from $\mathcal{B}_{n}[f; \lfloor nt\rfloor]$ . The main difficulty is to deal with the linear eigenvalue statistics for the test functions with several non-differentiable points. And our main strategy is to combine the Helffer-Sj?strand formula and a comparison procedure on the resolvents to extend the results from GUE case to general Wigner matrices case. Moreover, the results on $\mathcal{A}_{n}[f;u]$ for the real Wigner matrices will also be briefly discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700