A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry
详细信息    查看全文
  • 作者:Yusong Li (2)
    Guangqiang Sun (1)
    Yuehua Zhang (1)
    Cunwang Ge (1)
    Ning Bao (3)
    Yihong Wang (2)
  • 关键词:Bismuth nanotubes ; Silsesquioxane ; Lead ; Cadmium ; Stripping voltammetry
  • 刊名:Microchimica Acta
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:181
  • 期:7-8
  • 页码:751-757
  • 全文大小:
  • 参考文献:1. Kemper T, Sommer S (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ Sci Technol 36(12):2742-747 CrossRef
    2. Darwish IA, Blake DA (2001) Development and validation of a one-step immunoassay for determination of cadmium in human serum. Anal Chem 74(1):52-8 CrossRef
    3. Guzsvany V, Nakajima H, Soh N, Nakano K, Svancara I, Vytras K, Bjelica L, Imato T (2011) Anodic stripping voltammetry combined with sequential injection analysis for measurements of trace metal ions with bismuth- and antimony film electrodes under comparable conditions. Electroanal 23(7):1593-601 CrossRef
    4. Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanal 17(15-6):1341-346 CrossRef
    5. Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TracTrend Anal Chem 24(4):334-40 CrossRef
    6. Mirceski V, Hocevar SB, Ogorevc B, Gulaboski R, Drangov I (2012) Diagnostics of anodic stripping mechanisms under square-wave voltammetry conditions using bismuth film substrates. Anal Chem 84(10):4429-436 CrossRef
    7. Zong P, Nagaosa Y (2009) Determination of antimony(III) and (V) in natural water by cathodic stripping voltammetry with in-situ plated bismuth film electrode. Microchim Acta 166(1-):139-44 CrossRef
    8. Kruusma J, Banks C, Compton R (2004) Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes. Anal Bioanal Chem 379(4):700-06 CrossRef
    9. Baldrianova L, Svancara I, Sotiropoulos S (2007) Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste mini-electrodes. Anal Chim Acta 599(2):249-55 CrossRef
    10. Wang J, Tian B (1993) Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes. Anal Chem 65(11):1529-532 CrossRef
    11. Krolicka A, Bobrowski A (2004) Bismuth film electrode for adsorptive stripping voltammetry - electrochemical and microscopic study. Electrochem Commun 6(2):99-04 CrossRef
    12. Zhong WY, Zhang C, Gao Q, Li H (2012) Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots. Microchim Acta 176(1-):101-07 CrossRef
    13. Qi L, Shang Y, Wu FY (2012) Colorimetric detection of lead (II) based on silver nanoparticles capped with iminodiacetic acid. Microchim Acta 178(1-):221-27 CrossRef
    14. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688-720 CrossRef
    15. Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TracTrend Anal Chem 28(1):96-09 CrossRef
    16. Wang F, Wang JL, Chen HJ, Dong SJ (2007) Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR. J Electroanal Chem 600(2):265-74 CrossRef
    17. Dai PP, Yang ZS (2012) Sensor for lead(II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles. Microchim Acta 176(1-):109-15 CrossRef
    18. Yang FY, Liu K, Hong K, Reich DH, Searson PC, Chien CL (1999) Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284(5418):1335-337 CrossRef
    19. Behnia K, Balicas L, Kopelevich Y (2007) Signatures of electron fractionalization in ultraquantum bismuth. Science 317(5845):1729-731 CrossRef
    20. Li YD, Wang JW, Deng ZX, Wu YY, Sun XM, Yu DP, Yang PD (2001) Bismuth nanotubes: a rational low-temperature synthetic route. J Am Chem Soc 123(40):9904-905 CrossRef
    21. Boldt R, Kaiser M, K?hler D, Krumeich F, Ruck M (2009) High-yield synthesis and structure of double-walled bismuth-nanotubes. Nano Lett 10(1):208-10 CrossRef
    22. Liu XY, Zeng JH, Zhang SY, Zheng RB, Liu XM, Qian YT (2003) Novel bismuth nanotube arrays synthesized by solvothermal method. Chem Phys Lett 374(3-):348-52 CrossRef
    23. Li L, Yang YW, Huang XH, Li GH, Ang R, Zhang LD (2006) Fabrication and electronic transport properties of Bi nanotube arrays. Appl Phys Lett 88(10):103119(1-)
    24. Kharissova OV, Osorio M, Garza M, Kharisov BI (2008) Study of bismuth nanoparticles and nanotubes obtained by microwave heating. Synth React Inorg, Met-Org, Nano-Met Chem 38(7):567-72
    25. Wang XQ, Naka K, Zhu MF, Kuroda H, Itoh H, Chujo Y (2007) Self-organized multilayer films and porous nanocomposites of gold nanoparticles with octa(3-aminopropyl)octasilsesquioxane. J Inorg Organomet P 17(2):447-57 CrossRef
    26. Letant SE, Maiti A, Jones TV, Herberg JL, Maxwell RS, Saab AP (2009) Polyhedral oligomeric silsesquioxane (POSS)-stabilized Pd nanoparticles: factors governing crystallite morphology and secondary aggregate structure. J Phys Chem C 113(45):19424-9431 CrossRef
    27. He XH, Chen L, Xie X, Su ZH, Qin C, Liu Y, Ma M, Yao SZ, Deng L, Xie QJ, Tian Y, Qin DL, Luo YP (2012) Square wave anodic stripping voltammetric determination of lead(II) using a glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes. Microchim Acta 176(1-):81-9 CrossRef
    28. Yang BJ, Li C, Hu HM, Yang XG, Li QW, Qian YT (2003) A room-temperature route to bismuth nanotube arrays. Eur J Inorg Chem 20:3699-702 CrossRef
    29. Hoyer B, Florence TM, Batley GE (1987) Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Anal Chem 59(13):1608-614 CrossRef
    30. Kefala G, Economou A, Voulgaropoulos A (2004) A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 129(11):1082-090 CrossRef
    31. Rehacek V, Hotovy I, Vojs M, Kups T, Spiess L (2012) Nafion-coated bismuth film electrodes on pyrolyzed photoresist/alumina supports for analysis of trace heavy metals. Electrochim Acta 63:192-96 CrossRef
    32. Wang J, Lu JM, Hocevar SB, Farias PAM, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72(14):3218-222 CrossRef
    33. Lee GJ, Lee HM, Rhee CK (2007) Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem Commun 9(10):2514-518 CrossRef
    34. Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301-08 CrossRef
    35. Xu H, Zeng LP, Xing SJ, Xian YZ, Shi GY (2008) Ultrasensitive voltammetric detection of trace lead(II) and cadmium(II) using MWCNTs-Nafion/bismuth composite electrodes. Electroanal 20(24):2655-662 CrossRef
    36. Armstrong KC, Tatum CE, Dansby-Sparks RN, Chambers JQ, Xue ZL (2010) Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82(2):675-80 CrossRef
    37. Marinho JZ, Silva RAB, Barbosa TGG, Richter EM, Munoz RAA, Lima RC (2013) Graphite-composite electrodes bulk-modified with (BiO)2CO3 and Bi2O3 plates-like nanostructures for trace metal determination by anodic stripping voltammetry. Electroanal 25(3):765-70 CrossRef
    38. Hocevar SB, Svancara I, Vytras K, Ogorevc B (2005) Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim Acta 51(4):706-10 CrossRef
  • 作者单位:Yusong Li (2)
    Guangqiang Sun (1)
    Yuehua Zhang (1)
    Cunwang Ge (1)
    Ning Bao (3)
    Yihong Wang (2)

    2. Department of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210092, Jiangsu, People’s Republic of China
    1. School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, People’s Republic of China
    3. School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People’s Republic of China
  • ISSN:1436-5073
文摘
Single-walled bismuth nanotubes (sw-BiNTs) were self-assembled with octa(3-aminopropyl) silsesquioxane as a framework and to govern morphology. Deposited on a glassy carbon electrode (GCE), the sw-BiNTs were used for the simultaneous analysis of Pb(II) and Cd(II) by square wave stripping voltammetry. The sw-BiNTs were prepared by (a) coordination interaction between the amino groups of the silsesquioxane and the Bi(III) ions, and by (b) reduction with sodium borohydride. Transmission electron microscopy images revealed single-walled tubular structures with diameters of ~4-?nm, and with lengths of several hundreds nanometers. GCEs modified with such sw-BiNTs perform much better than bare GCEs in stripping analysis of Pb(II) and Cd(II). The effects of adsorption quantity of sw-BiNTs, solution pH, pulse amplitude, and pulse width were optimized. The modified electrode was then used for the analysis of Pb(II) and Cd(II) in a linear response range from 0.4 to 6?μM with a sensitivity of 4.692?μA?μM? and 3.835?μA?μM?, and detection limits of 1?nM and 5?nM, respectively. The method was successfully applied to the analysis of Pb(II) and Cd(II) in toy leachates, and the results were in good agreement with those obtained with atomic absorption spectrometry. Sensitivity and detection limits were compared with other voltammetric methods, and the sw-BiNTs are deemed to be an attractive alternative for practical applications. Other features of the electrode include low costs, a well reproducible nanostructure, and ease of scale-up of the fabrication process. Figure Single-walled bismuth nanotubes (BiNTs) were self-assemblied with octa(3-aminopropyl) silsesquioxane as framework and morphology control agent for the simultaneous detection of trace Pb(II) and Cd(II) by square wave stripping voltammetry. The proposal preparation avoids time-consuming pre-treatment and experienced operation. The sensitivity and detection limit of the method was comparable to reported voltammetric methods, and BiNTs might be an alternative candidate for practical applications of electrochemical detection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700