Temperature effect on electrochemical properties of Ti4O7 electrodes prepared by spark plasma sintering
详细信息    查看全文
  • 作者:Jinwen Ye ; Guangrui Wang ; Xiaolei Li
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:26
  • 期:7
  • 页码:4683-4690
  • 全文大小:1,131 KB
  • 参考文献:1.A. Magneli, S. Andersson, B. Collen, U. Kuylenstierna, Phase analysis studies on the titanium oxygen system. Acta Chem. Scand. 11, 1641 (1957)View Article
    2.W.Q. Han, Y. Zhang, Magnéli phases TinO2n? nanowires: formation, optical, and transport properties. Appl. Phys. Lett. 92, 203117 (2008)View Article
    3.J.R. Smith, F.C. Walsh, R.L. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex? materials. J. Appl. Electrochem. 28, 1021-033 (1998)View Article
    4.F.C. Walsh, R.G.A. Wills, The continuing development of Magnéli phase titanium sub-oxides and Ebonex? electrodes. Electrochim. Acta 55, 6342-351 (2010)View Article
    5.D. Regonini, V. Adamaki, C.R. Bowen, S.R. Pennock, J. Taylor, A.C.E. Dent, AC electrical properties of TiO2 and Magnéli phase, TinO2n?. Solid State Ionics 229, 38-4 (2012)View Article
    6.R.F. Bartholomew, D.R. Frankl, Electrical properties of some titanium oxides. Phys. Rev. 187, 828 (1969)View Article
    7.R.C. West (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987), p. F-122
    8.C. Acha, M. Monteverde, M. Nunez-Regueiro, A. Kuhn, M.A. Alario, Franco, electrical resisitivity of the Ti4O7 Magneli phase under high pressure. Eur. Phys. J. B 34, 421-28 (2003)View Article
    9.J.E. Graves, D. Pletcher, R.L. Clarke, F.C. Walsh, The electrochemistry of Magnéli phase titanium oxide ceramic electrodes: part I. The deposition and properties of metal coatings. J. Appl. Electrochem. 21, 848 (1991)View Article
    10.E.E. Farndon, D. Pletcher, Studies of platinized Ebonex? electrodes. Electrochim. Acta 42, 1281 (1997)View Article
    11.W.-H. Kao, P. Patel, S.L. Haberichter, Formation enhancement of a lead/acid battery positive plate by barium metaplumbate and Ebonex?. J. Electrochem. Soc. 144, 1907 (1997)View Article
    12.E.E. Farndon, D. Pletcher, The electro-deposition of platinum onto a conducting ceramic, Ebonex?. Electrochim. Acta 42, 1269 (1997)View Article
    13.O.I. Kasian, T.V. Luk’yanenko, P. Demchenko, R.E. Gladyshevskii, R. Amadelli, A.B. Velichenko, Electrochemical properties of thermally treated platinized Ebonex? with low content of Pt. Electrochem. Acta 109, 630-37 (2013)View Article
    14.D. Bejan, J.D. Malcolm, L. Morrison et al., Mechanistic investigation of the conductive ceramic Ebonex as an anode material. Electrochim. Acta 54(23), 5548-556 (2009)View Article
    15.T.B. Do, M. Cai, M.S. Ruthkosky, T.E. Moylan, Niobium-doped titanium oxide for fuel cell application. Electrochim. Acta 55, 8013-017 (2010)View Article
    16.P. Krishnan, S.G. Adavani, A.K. Prasad, Magneli phase TinO2n? as corrosion–resistant PEM fuel cell catalyst support. J. Solid State Electrochem. 16, 2515-521 (2012)View Article
    17.D. Bejan, E. Guinea, N.J. Bunce, On the nature of the hydrogxyl radicals produced at boron-doped diamond and Ebonex? anodes. Electrochim. Acta 69, 275 (2012)View Article
    18.T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stochiometric titanium oxide-supported platinum electro-catalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183-88 (2005)View Article
    19.D. Bejan, J.D. Malcolm, L. Morrison, N.J. Bunce, Mechanistic investigation of the conductive ceramic Ebonex? as an anode material. Electrochim. Acta 54, 5548-556 (2009)View Article
    20.K. Ellis, A. Hill, J. Hill, A. Loyns, T. Partington, The performance of Ebonex? electrodes in bipolar lead–acid batteries. J. Power Sources 136, 366-71 (2004)View Article
    21.A.C. Loyns, A. Hill, K.G. Ellis, T.J. Partington, J.M. Hill, Bipolar batteries based on Ebonex? technology. J. Powder Sources 144, 329-37 (2005)View Article
    22.L. Xiaoxia, L.Z. Aaron, Q. Wei, W. Haijiang, H. Rob, Z. Lei, Z. Jiujun, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc–air rechargeable batteries. Electrochim. Acta 55, 5891-898 (2010)View Article
    23.A.A. Pesaran, Battery thermal models for hybrid vehicle simulations. J. Power Sources 110, 377-82 (2002)View Article
    24.K.C. Divya, J. ?stergaard, Battery energy storage technology for power systems—an overview. Electr. Power Syst. Res. 79, 511-20 (2009)View Article
    25.R. Zhu, Y. Liu, J. Ye, X. Zhang, Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductive and optical property. J. Mater. Sci. Mater. Electron. 24, 4853-856 (2013)View Article
    26.X. Zhang, Y. Liu, J. Ye, R. Zhu, Fabrication of Ti4O7 electrodes by spark plasma sintering. Mater. Lett. 114, 34-6 (2014)View Article
    27.O. Kasian, T. Luk’yanenko, A. Velichenko et al., Electrochemical Behavior of Platinized Ebonex? Electrodes. Int. J. Electrochem. Sci. 7, 7915-926 (2012)
    28.A. Doner, R. Solmaz, G. Kardas, Int. J. Hydrog. Energy 36, 7391 (2001)View Article
    29.B. Hammer, J.K. N?rskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343(3), 211-20 (1995)View Article
    30.Z. Tang, L.
  • 作者单位:Jinwen Ye (1)
    Guangrui Wang (1)
    Xiaolei Li (1)
    Ying Liu (1)
    Ruijie Zhu (1)

    1. School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1573-482X
文摘
In this paper, Magnéli phase Ti4O7 powders were successfully synthesized and used to fabricate high quality Ti4O7 electrodes by the spark plasma sintering (SPS) technique. The micro-structure, conductivity and electrochemical properties of the Ti4O7 electrode were investigated respectively. Furthermore, temperature’s effect on the electrochemical properties of Ti4O7 working electrode was studied by the cyclic voltammetry measurements under strong sulfuric acid and alkaline conditions at different temperature to simulate actual operating temperature in various electrolyte such as in lead–acid or zinc–air batteries. The results showed that Ti4O7 electrodes prepared by SPS without doping of adhesives had high conductivity, favorable electrochemical activities in function of temperature and electrochemical stability under strong sulfuric acid and alkaline conditions. It would be feasible candidate to bipolar lead–acid battery and used as air cathodes in zinc–air batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700