A near-infrared turn-on fluorescent nanosensor for zinc(II) based on CuInS2 quantum dots modified with 8-aminoquinoline
详细信息    查看全文
  • 作者:Ziping Liu (1)
    Guangying Li (2)
    Qiang Ma (1)
    Linlin Liu (1)
    Xingguang Su (1)
  • 关键词:CuInS2 QDs ; NIR fluorescent nanosensor ; Fluorescence “turn ; on-/li> Zn(II) ; 8 ; aminoquinoline
  • 刊名:Microchimica Acta
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:181
  • 期:11-12
  • 页码:1385-1391
  • 全文大小:590 KB
  • 参考文献:1. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneu- rochemistry. Acc Chem Res 42:193-03 CrossRef
    2. Assaf SY, Chung S-H (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734-36 CrossRef
    3. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081-085 CrossRef
    4. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347-75 CrossRef
    5. Bush AI (2003) Expression and Localization of Mitochondrial Ferritin mRNA in Alzheimer's Disease Cerebral Cortex. Alzheimer Dis Assoc Disord 17:147-50 CrossRef
    6. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449-62 CrossRef
    7. Voegelin A, Poster S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Changes in zinc speciation in field soil after contamination with zinc oxide. Environ Sci Technol 39:6616 CrossRef
    8. Ma JJ, Zhang J, Du X, Lei X, Li J (2010) Solidified floating organic drop microextraction for determination of trace amounts of zinc in water samples by flame atomic absorption spectrometry. Microchim Acta 168:153-59 CrossRef
    9. Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P (2007) A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn2+ Ions. Org Lett 9:2385-388 CrossRef
    10. Crivat G, Kikuchi K, Nagano T, Priel T, Hershfinkel M, Sekler I, Rosenzweig N, Rosenzweig Z (2006) Fluorescence-Based Zinc Ion Sensor for Zinc Ion Release from Pancreatic Cells. Anal Chem 78:5799-804 CrossRef
    11. Lim NC, Bruckner C (2004) DPA-substituted coumarins as chemosensors for zinc (II): modulation of the chemosensory characteristics by variation of the position of the chelate on thecoumarin. Chem Commun 1094-095
    12. Xu ZC, Baek KH, Kim HN, Cui JN, Qian XH, Spring DR, Shin I, Yoon J (2010) Zn2--Triggered Amide Tautomerization Produces a Highly Zn2--Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. J Am Chem Soc 132:601-10 CrossRef
    13. Kiyose K, Kojima H, Urano Y, Nagano T (2006) Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J Am Chem Soc 128:6548-549 CrossRef
    14. Han ZX, Zhang XB, Zhuo L, Gong YJ, Wu XY, Zhen J, He CM, Jian LX, Jing Z, Shen GL, Yu RQ (2010) Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger. Anal Chem 82:3108-113 CrossRef
    15. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications. J Am Chem Soc 126:12470-2476 CrossRef
    16. He CS, Zhu WP, Xu YF, Zhong Y, Zhou JA, Qian XH (2010) Ratiometric and reusable fluorescent nanoparticles for Zn2+ and H2PO4?detection in aqueous solution and living cells. J Mater Chem 20:10755-0764 CrossRef
    17. Aoki S, Sakurama K, Matsuo N, Yamada Y, Takasawa R, Tanuma SI, Shiro M, Takeda K, Kimura E (2006) Chem-Eur J 12:9066-080 CrossRef
    18. Chen XY, Shi J, Li YM, Wang FL, Wu X, Guo QX, Liu L (2009) Org Lett 11:4426-429 CrossRef
    19. Joshi BP, Cho WM, Kim J, Yoon J, Lee KH (2007) Design, synthesis, and evaluation of peptidyl fluorescent probe for Zn2+ in aqueous solution. Bioorg Med Chem Lett 17:6425-429 CrossRef
    20. Shults MD, Pearce DA, Imperiali B (2003) Modular and Tunable Chemosensor Scaffold for Divalent Zinc. J Am Chem Soc 125:10591-0597 CrossRef
    21. Benson DE, Wisz MS, Hellinga HW (1998) The development of new biotechnologies using metalloprotein design. Curr Opin Biotechnol 9:370-76 CrossRef
    22. Ruedas-Rama MJ, Hall EAH (2008) Azamacrocycle Activated Quantum Dot for Zinc Ion Detection. Anal Chem 80:8260-268 CrossRef
    23. Chen Y, Han K-Y, Liu Y (2007) Effective switch-on fluorescence sensing of zinc (II) ion by 8-aminoquinolino-β-cyclodextrin/adamantaneacetic acid system in water. Bioorg Med Chem 15:4537-542 CrossRef
    24. Liu ZP, Ma Q, Wang XY, Lin ZH, Liu LL, Zhang H, Su XG (2014) A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosensors and Bioelectronics 54:617-22 CrossRef
    25. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281:2013-016 CrossRef
    26. Chan WCW, Nie SM (1998) Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 281:2016-018 CrossRef
    27. Moore DE, Patel K (2001) Q-CdS Photoluminescence Activation on Zn2+ and Cd2+ Salt Introduction. Langmuir 17:2541-544 CrossRef
    28. Liu SY, Shi FP, Zhao XJ, Chen L, Su XG (2013) 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosensors and Bioelectronics 47:379-84 CrossRef
    29. Liu SY, Zhang H, Qiao Y, Su XG (2012) One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Advances 2:819-25 CrossRef
    30. Carrión CC, Cárdenas S, Simonet BM, Valcárcel M (2009) Selective Quantification of Carnitine Enantiomers Using Chiral Cysteine-Capped CdSe (ZnS) Quantum Dots. Anal Chem 81:4730-733 CrossRef
    31. Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) A Hybrid Quantum Dot???Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. J Am Chem Soc 127:6744-751 CrossRef
    32. Jin WJ, Fernández-Argüelles MT, Costa-Fernández JM, Pereiro R, SanzMedel A (2005) Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun 883-85
    33. Xu C, Bakker E (2007) Multicolor Quantum Dot Encoding for Polymeric Particle-Based Optical Ion Sensors. Anal Chem 79:3716-723 CrossRef
  • 作者单位:Ziping Liu (1)
    Guangying Li (2)
    Qiang Ma (1)
    Linlin Liu (1)
    Xingguang Su (1)

    1. Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
    2. Department of Psychology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
  • ISSN:1436-5073
文摘
We describe a novel near-infrared (NIR) “turn-on-fluorescent nanosensor for highly sensitive and selective detection of Zn(II) ion. It is based on the use of the fluorescent probe 8-aminoquinoline conjugate to CuInS2 quantum dots. Water-soluble CuInS2 QDs capped by mercaptopropionic acid (MPA) were synthesized in aqueous solution via a hydrothermal method, and the carboxy groups on the surface of the capped QDs were then covalently linked to the amino groups of the probe 8-aminoquinoline to form the conjugate acting as a nanosensor. The fluorescence of the modified QDs is almost completely quenched via a hole-transfer mechanism. If, however, Zn(II) is added, the lone pair electrons of the nitrogen atom of 8-aminoquinoline become involved into the mechanism of binding Zn(II), and hole-transfer quenching is suppressed which results in turn-on fluorescence. The nanoprobe enables Zn(II) to be determined by measurement of the increase in fluorescence intensity. Under optimized experimental conditions, the nanosensor displays a wide and fairly linear response in the 0.005 to 1?mM concentration range, with a 4.5?μM detection limit. The nanosensor reported here was successfully employed to the detection of Zn(II) in spiked tap water samples. Figure 1 The fluorescence of CuInS2 quantum dots (QDs) is quenched by 8-aminoquinoline via the hole-transfer mechanism. In the presence of Zn(II), the hole-transfer process is suppressed which results in turn-on the fluorescence. Therefore, a nanosensor is constructed to detect Zn(II).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700