Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer
详细信息    查看全文
  • 作者:Xiao Peng Mao (1)
    Luo Sheng Zhang (2)
    Bin Huang (1)
    Shi Ying Zhou (1)
    Jun Liao (1)
    Ling Wu Chen (2)
    Shao Peng Qiu (1)
    Jun Xing Chen (1)

    1. Department of Urology
    ; the First Affiliated Hospital ; Sun Yat-Sen University ; Guangzhou ; 510080 ; PR China
    2. Oncology Department
    ; PLA458 Hospital ; Guangzhou ; 510000 ; China
  • 关键词:Bladder cancer ; miR ; 135a ; PHLPP2 ; FOXO1 ; Proliferation
  • 刊名:Journal of Translational Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:1,889 KB
  • 参考文献:1. Griffiths, TR (2013) Current perspectives in bladder cancer management. Int J Clin Pract 67: pp. 435-48 CrossRef
    2. Ploeg, M, Aben, KK, Kiemeney, LA (2009) The present and future burden of urinary bladder cancer in the world. World J Urol 27: pp. 289-93 CrossRef
    3. Crawford, JM (2008) The origins of bladder cancer. Lab Invest 88: pp. 686-93 CrossRef
    4. Micheli, A, Francisci, S, Krogh, V, Rossi, AG, Crosignani, P (1999) Cancer prevalence in Italian cancer registry areas: the ITAPREVAL study. ITAPREVAL working group. Tumori 85: pp. 309-69
    5. Gao, T, Furnari, F, Newton, AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18: pp. 13-24 CrossRef
    6. Brognard, J, Sierecki, E, Gao, T, Newton, AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25: pp. 917-31 CrossRef
    7. Brognard, J, Newton, AC (2008) PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab 19: pp. 223-30 CrossRef
    8. Calnan, DR, Brunet, A (2008) The FoxO code. Oncogene 27: pp. 2276-88 CrossRef
    9. Huang, H, Tindall, DJ (2006) FOXO factors: a matter of life and death. Future Oncol 2: pp. 83-9 CrossRef
    10. Furukawa-Hibi, Y, Yoshida-Araki, K, Ohta, T, Ikeda, K, Motoyama, N (2002) FOXO forkhead transcription factors induce G (2)-M checkpoint in response to oxidative stress. J Biol Chem 277: pp. 26729-32 CrossRef
    11. Arden, KC (2007) FoxOs in tumor suppression and stem cell maintenance. Cell 128: pp. 235-7 CrossRef
    12. Xie, L, Ushmorov, A, Leithauser, F, Guan, H, Steidl, C, Farbinger, J (2012) FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119: pp. 3503-11 CrossRef
    13. Bois, PR, Izeradjene, K, Houghton, PJ, Cleveland, JL, Houghton, JA, Grosveld, GC (2005) FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. J Cell Biol 170: pp. 903-12 CrossRef
    14. Dong, XY, Chen, C, Sun, X, Guo, P, Vessella, RL, Wang, RX (2006) FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res 66: pp. 6998-7006 CrossRef
    15. Ronald, D, Gary, G (2007) FOXO genes act in vivo as tumor suppressors. Canc Biol Ther 6: pp. 132-3
    16. Xi, JJ (2013) MicroRNAs in cancer. Cancer Treat Res 158: pp. 119-37 CrossRef
    17. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-97 CrossRef
    18. Mlcochova, H, Hezova, R, Stanik, M, Slaby, O (2014) Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol 32: pp. 41 CrossRef
    19. Rosenberg, E, Baniel, J, Spector, Y, Faerman, A, Meiri, E, Aharonov, R (2013) Predicting progression of bladder urothelial carcinoma using microRNA expression. BJU Int 112: pp. 1027-34
    20. Wang, S, Xue, S, Dai, Y, Yang, J, Chen, Z, Fang, X (2012) Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol 7: pp. 159 CrossRef
    21. Li, S, Xu, X, Xu, X, Hu, Z, Wu, J, Zhu, Y (2013) MicroRNA鈥?90鈥?p inhibits proliferation of bladder cancer by targeting c-Fos. Biochem Biophys Res Commun 441: pp. 976-81 CrossRef
    22. Jiang, QQ, Liu, B, Yuan, T (2013) MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. Asian Pac J Cancer Prev 14: pp. 4127-30 CrossRef
    23. Guo, Y, Liu, H, Zhang, H, Shang, C, Song, Y (2012) miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Letters 4: pp. 561-5
    24. Xu, X, Li, S, Lin, Y, Chen, H, Hu, Z, Mao, Y (2013) MicroRNA-124鈥?p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. J Transl Med 11: pp. 276 CrossRef
    25. Liu, Y, Han, Y, Zhang, H, Nie, L, Jiang, Z, Fa, P (2012) Synthetic miRNA-mowers targeting miR鈥?83鈥?6鈥?82 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 7: pp. e52280 CrossRef
    26. Zaravinos, A, Radojicic, J, Lambrou, GI, Volanis, D, Delakas, D, Stathopoulos, EN (2012) Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol 188: pp. 615-23 CrossRef
    27. Flieger, A, Golka, K, Schulze, H, Follmann, W (2008) Primary cultures of human urothelial cells for genotoxicity testing. J Toxicol Environ Health A 71: pp. 930-5 CrossRef
    28. Rahman, Z, Reedy, EA, Heatfield, BM (1987) Isolation and primary culture of urothelial cells from normal human bladder. Urol Res 15: pp. 315-20 CrossRef
    29. Hahn, WC, Dessain, SK, Brooks, MW, King, JE, Elenbaas, B, Sabatini, DM (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22: pp. 2111-23 CrossRef
    30. Xu, X, Chen, H, Lin, Y, Hu, Z, Mao, Y, Wu, J (2013) MicroRNA-409鈥?p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells 36: pp. 62-8 CrossRef
    31. Majid, S, Dar, AA, Saini, S, Deng, G, Chang, I, Greene, K (2013) MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One 8: pp. e67686 CrossRef
    32. Liu, S, Guo, W, Shi, J, Li, N, Yu, X, Xue, J (2012) MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol 56: pp. 389-96 CrossRef
    33. Cheng, M, Yang, L, Yang, R, Yang, X, Deng, J, Yu, B (2013) A microRNA-135a/b binding polymorphism in CD133 confers decreased risk and favorable prognosis of lung cancer in Chinese by reducing CD133 expression. Carcinogenesis 34: pp. 2292-9 CrossRef
    34. Yamada, Y, Hidaka, H, Seki, N, Yoshino, H, Yamasaki, T, Itesako, T (2013) Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci 104: pp. 304-12 CrossRef
    35. Zhou, W, Li, X, Liu, F, Xiao, Z, He, M, Shen, S (2012) MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin 44: pp. 838-46 CrossRef
    36. Wu, H, Huang, M, Cao, P, Wang, T, Shu, Y, Liu, P (2012) MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 13: pp. 281-8 CrossRef
    37. Nagel, R, Sage, C, Diosdado, B, Waal, M, Oude Vrielink, JA, Bolijn, A (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68: pp. 5795-802 CrossRef
    38. Chen, Y, Zhang, J, Wang, H, Zhao, J, Xu, C, Du, Y (2012) miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10. BMC Cancer 12: pp. 111 CrossRef
    39. Liu, J, Weiss, HL, Rychahou, P, Jackson, LN, Evers, BM, Gao, T (2009) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28: pp. 994-1004 CrossRef
    40. Cai, J, Fang, L, Huang, Y, Li, R, Yuan, J, Yang, Y (2013) miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res 73: pp. 5402-15 CrossRef
    41. Mei, Z, He, Y, Feng, J, Shi, J, Du, Y, Qian, L (2014) MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett 588: pp. 3055-61 CrossRef
    42. Fendler, A, Jung, M, Stephan, C, Erbersdobler, A, Jung, K, Yousef, GM (2013) The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS One 8: pp. e80807 CrossRef
    43. Aoki, M, Jiang, H, Vogt, PK (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci U S A 101: pp. 13613-7 CrossRef
    44. Matsuzaki, H, Daitoku, H, Hatta, M, Tanaka, K, Fukamizu, A (2003) Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 100: pp. 11285-90 CrossRef
    45. Fatrai, S, Elghazi, L, Balcazar, N, Cras-Meneur, C, Krits, I, Kiyokawa, H (2006) Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55: pp. 318-25 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background Bladder cancer is the most common malignancy in urinary system and the ninth most common malignancy in the world. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by targeted repression of transcription and translation and play essential roles during cancer development. We investigated the expression of miR-135a in bladder cancer and explored its bio-function during bladder cancer progression. Methods The expression of miR-135a in bladder cancer cells and tissues are performed by using Real-time PCR assay. Cell viability assay (MTT assay), colony formation assay, anchorage-independent growth ability assay and Bromodeoxyuridine labeling and immunofluorescence (BrdUrd) assay are used to examine cell proliferative capacity and tumorigenicity. Flow cytometry analysis is used to determine cell cycle progression. The expressions of p21, p27, CyclinD1, Ki67, PHLPP2 and FOXO1 are measured by Western blotting assay. Luciferase assay is used to confirm whether FOXO1 is the direct target of miR-135a. Results miR-135a is upregulated in bladder cancer cells and tissues. Enforced expression of miR-135a promotes bladder cancer cells proliferation, whereas inhibition of miR-135a reverses the function. Furthermore, for the first time we demonstrated PHLPP2 and FOXO1 are direct targets of miR-135a and transcriptionally down-regulated by miR-135a. Suppression of PHLPP2 or FOXO1 by miR-135a, consisted with dysregulation of p21, p27, Cyclin D1 and Ki67, play important roles in bladder cancer progression. Conclusion Our study demonstrates that miR-135a promotes cell proliferation in bladder cancer by targeting PHLPP2 and FOXO1, and is performed as an onco-miR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700