Activation of gab cluster transcription in Bacillus thuringiensis by γ-aminobutyric acid or succinic semialdehyde is mediated by the Sigma 54-dependent transcriptional activator GabR
详细信息    查看全文
  • 作者:Qi Peng ; Min Yang ; Wei Wang ; Lili Han ; Guannan Wang ; Pengyue Wang
  • 关键词:GabR ; Sigma 54 ; GABA ; SSA ; PAS domain
  • 刊名:BMC Microbiology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,282 KB
  • 参考文献:1. Varju, P, Katarova, Z, Madarasz, E, Szabo, G (2001) GABA signalling during development: new data and old questions. Cell Tissue Res 305: pp. 239-246 CrossRef
    2. Shelp, BJ, Bown, AW, McLean, MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4: pp. 446-452 CrossRef
    3. Bartsch, K, Johnn-Marteville, A, Schulz, A (1990) Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J Bacteriol 172: pp. 7035-7042
    4. Prell, J, Bourdes, A, Karunakaran, R, Lopez-Gomez, M, Poole, P (2009) Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol 191: pp. 2177-2186 CrossRef
    5. Belitsky, BR, Sonenshein, AL (2002) GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Mol Microbiol 45: pp. 569-583 CrossRef
    6. Aronson, JN, Borris, DP, Doerner, JF, Akers, E (1975) Gamma-aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl Microbiol 30: pp. 489-492
    7. Nickerson, KW, Pinto, J, Bulla, LA (1974) Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle. J Bacteriol 117: pp. 321-323
    8. Zhu, L, Peng, Q, Song, F, Jiang, Y, Sun, C, Zhang, J, Huang, D (2010) Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J Bacteriol 192: pp. 346-355 CrossRef
    9. Bush, M, Dixon, R (2012) The role of bacterial enhancer binding proteins as specialized activators of sigma54-dependent transcription. Microbiol Mol Biol Rev 76: pp. 497-529 CrossRef
    10. Reitzer, L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57: pp. 155-176 CrossRef
    11. Meyer, MG, Park, S, Zeringue, L, Staley, M, McKinstry, M, Kaufman, RI, Zhang, H, Yan, D, Yennawar, N, Yennawar, H, Farber, GK, Nixon, BT (2001) A dimeric two-component receiver domain inhibits the sigma54-dependent ATPase in DctD. FASEB J 15: pp. 1326-1328
    12. Leonhartsberger, S, Huber, A, Lottspeich, F, Bock, A (2001) The hydH/G Genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307: pp. 93-105 CrossRef
    13. Brahmachary, P, Dashti, MG, Olson, JW, Hoover, TR (2004) Helicobacter pylori FlgR is an enhancer-independent activator of sigma54-RNA polymerase holoenzyme. J Bacteriol 186: pp. 4535-4542 CrossRef
    14. Hopper, S, Bock, A (1995) Effector-mediated stimulation of ATPase activity by the sigma 54-dependent transcriptional activator FHLA from Escherichia coli. J Bacteriol 177: pp. 2798-2803
    15. Henry, JT, Crosson, S (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65: pp. 261-286 CrossRef
    16. Pittard, J, Camakaris, H, Yang, J (2005) The TyrR regulon. Mol Microbiol 55: pp. 16-26 CrossRef
    17. Liu, G, Song, L, Shu, C, Wang, P, Deng, C, Peng, Q, Lereclus, D, Wang, X, Huang, D, Zhang, J, Song, F (2013) Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announcements 1: pp. e0008013 CrossRef
    18. Dower, WJ, Miller, JF, Ragsdale, CW (1988) High efficiency transform
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background Bacillus thuringiensis GabR is a Sigma 54-dependent transcriptional activator containing three typical domains, an N-terminal regulatory domain Per-ARNT-Sim (PAS), a central AAA+ (ATPases associated with different cellular activities) domain and a C-terminal helix-turn-helix (HTH) DNA binding domain. GabR positively regulates the expression of the gabT gene of the gab gene cluster, which is responsible for the γ-aminobutyric acid (GABA) shunt. Results Purified GabR was shown to specifically bind to a repeat region that mapped 58?bp upstream of the gabT start codon. The specific signal factors GABA and succinic semialdehyde (SSA) activated gabT expression, whereas GABA- and SSA-inducible gabT transcription was abolished in sigL and gabR mutants. GABA and SSA did not induce the expression of either SigL or GabR. Deletion of the PAS domain of GabR resulted in increased gabT transcriptional activity, both in the presence and absence of GABA. Conclusions This study identified the GabR-binding site on the gabT promoter; however, GabR does not bind to its own promoter. gabT transcription is induced by GABA and SSA, and inducible expression is dependent on SigL and activated by GabR. The PAS domain in GabR is repressing its enhancer transcriptional activity on the gabT promoter. Repression is released upon GABA addition, whereupon transcription is induced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700