Evaluation of the potential impact of fluorine-rich fertilizers on the Guarani Aquifer System, Rio Grande do Sul, Southern Brazil
详细信息    查看全文
  • 作者:Maria Paula Casagrande Marimon (1)
    Ari Roisenberg (2)
    Antonio Pedro Viero (2)
    Flávio Anastacio de Oliveira Camargo (3)
    Alexandra Vieira Suhogusoff (2)
  • 关键词:Adsorption ; Clay ; Fertilizers ; Fluorine ; Guarani Aquifer System
  • 刊名:Environmental Earth Sciences
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:69
  • 期:1
  • 页码:77-84
  • 全文大小:411KB
  • 参考文献:1. Arnesen AKM (1997) Availability of fluorine to plants grown in contaminated soils. Plant. Soil 191:13-5 CrossRef
    2. Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: a review of this fate, bioavailability and risks of fluorosis in grazed-pasture system in New Zealand. J Agric Res 43:295-21 CrossRef
    3. Davis JC (2002) Statistics and a data analysis in geology. Wiley, New York
    4. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking water. World Health Organization, Geneva
    5. Giardin A, Faccini U (2004) Hydrostratigraphical complexity of Guarani Aquifer. Methodological approach applied to Santa Maria area–RS, Brazil (Complexidade hidroestratigráfica e estrutural do Sistema Aqüífero Guarani: abordagem metodológica aplicada ao exemplo da área de Santa Maria-RS, Brasil). Rev águas Subter 18:39-4
    6. Gupta SK, Deshpande RD, Agarwal M, Raval BR (2005) Origin of high fluorine in groundwater in the north Gujarat-Cambay region, India. Hydrogeol J 13:596-05 CrossRef
    7. Hach (2000) Procedures manual, DR 2010 Spectrophotometer. Colorado
    8. Harrington LF, Cooper EM, Vasudevan D (2003) Fluorine sorption and associated aluminum release in variable charge soils. J Coll Interf Sci. 267:302-13 CrossRef
    9. Harrison PT (2005) Fluorine in water: a UK perspective. J Fluor Chem 126:1448-456 CrossRef
    10. Jacks G, Bhattacharya P, Chadhary V, Singh KP (2005) Controls on the genesis of some high-fluorine groundwaters in India. Appl Geochem 20:221-28 CrossRef
    11. Kau PMH, Smith DW, Binning P (1998) Experimental sorption of fluorine by kaolinite and bentonite. Geoderma 84:89-08 CrossRef
    12. Lobo EA, Baccar NM, Costa AB, Kirst A (1999) Estudo da qualidade da água de po?os artesianos da regi?o do Vale do Rio Pardo, RS, Brasil. REDES 4:57-2
    13. Lobo EA, Costa AB, Kirst A (2000) Qualidade das águas subterraneas, em rela??o à concentra??o de íons fluoretos, na regi?o dos Vales do Rio Pardo e Rio Taquari, RS, Brasil. XI Congresso Brasileiro de águas Subterraneas, Fortaleza (CE). Anais, Fortaleza: ABAS
    14. Loganathan P, Hedley MJ, Wallace GC, Roberts AHC (2001) Fluorine accumulation in pasture forages and soils following long-term applications of phosphorus fertilizers. Environ Poll. 115:275-82 CrossRef
    15. Mclaughlin MJ, Stevens DP, Keerthisinghe G, Cayley JWD, Ridley AM (2001) Contamination of soil with fluoride by long-term application of superphosphate to pastures and risks to grazing animals. Aust J Soil Res 39(3):627-40 CrossRef
    16. McQuaker NR, Gurney M (1977) Determination of total fluorine in soil and vegetation using an alcali fusion-seletive ion electrode technique. Anal Chem 49:53-6 CrossRef
    17. Mirlean N, Roisenberg A, Cruz RD, Casartelli R, Garcia M (2001) Evaluation of fluorine migration in raw materials and fertilizers utilized in Rio Grande do Sul (Avalia??o do Flúor migrável das matérias primas e dos fertilizantes fosfatados utilizados no Rio Grande do Sul). Congresso Brasileiro de Geoquímica, 8, Curitiba (PR), 2001. Anais Curitiba: SBGq vol 1:5-
    18. Roisenberg C, Viero AP, Roisenberg A, Schwarzbach MS, Morante IC (2003) Geochemical characterization and genesis of the main ions in groundwaters of Porto Alegre (Caracteriza??o geoquímica e gênese dos principais íons da água subterranea de Porto Alegre). Rev Bras Rec Hídric 8:137-47
    19. Savenko AV (2001) Interaction between clay minerals and fluorine-containing solutions. Water Resour 28:274-77 CrossRef
    20. Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40:1084-087 CrossRef
    21. Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chim Act 550:82-2 CrossRef
    22. Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367:182-90 CrossRef
    23. Wenzel WW, Blum WEH (1992) Fluorine speciation and mobility in F-contaminated soils. Soil Sci 153:357-64 CrossRef
    24. World Health Organization (2011) Guidelines for Drinking-water Quality. vol 1: recommendations, 4th ed edn. World Health Organization (WHO), Geneva
  • 作者单位:Maria Paula Casagrande Marimon (1)
    Ari Roisenberg (2)
    Antonio Pedro Viero (2)
    Flávio Anastacio de Oliveira Camargo (3)
    Alexandra Vieira Suhogusoff (2)

    1. Departamento de Geografia, Universidade do Estado de Santa Catarina, Avenida Madre Benvenuta, 2007, Florianópolis, SC, 88035-001, Brazil
    2. Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gon?alves, 9500, Porto Alegre, RS, 91501-970, Brazil
    3. Departamento de Ciências do Solo, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gon?alves, 7712, Porto Alegre, RS, 91540-000, Brazil
  • ISSN:1866-6299
文摘
It has been determined that the fluorine concentration reaches up to 11?mg?L? in the porous-confined Santa Maria Aquifer, Guarani Aquifer System, in the central region of the state of Rio Grande do Sul, southern Brazil. Due to the elevated fluorine content in the groundwater, which is the major supply for drinking water, several incidences of dental fluorosis occurred. This area is the largest tobacco producer in Brazil and has a long history of fertilizer application. The fluorine in the local groundwater is likely to have come from the use of apatite-based fertilizers. This hypothesis was tested by soil and water analyses. Fluorine concentration has been monitored in the field for 2?years. The data combined with laboratory experiments on the adsorption and leaching of fluorine in soils showed that fluorine is easily retained by adsorption on aluminum clay-rich soils (Udults). The local clay-rich soils present high cation exchange capacity, aluminum content, and low pH; they act as a trap for fluorine derived from fertilizer and play an important role in the mobility of fluorine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700