Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil
详细信息    查看全文
  • 作者:Maria Paula C. Marimon (1) (2)
    Ari Roisenberg (1)
    Alexandra V. Suhogusoff (1)
    Antonio Pedro Viero (1)
  • 关键词:Fluoride ; Groundwater ; Principal components and cluster analyses ; Geochemical modeling ; Guarani Aquifer System
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:35
  • 期:3
  • 页码:391-403
  • 全文大小:560KB
  • 参考文献:1. Araújo, L. M., Fran?a, A. B., & Potter, P. E. (1995). / Aqüífero gigante do Mercosul no Brasil, Argentina, Paraguai e Uruguai: Mapas hidrogeológicos das forma??es Botucatu, Pirambóia, Rosário do Sul, Buena Vista, Misiones e Tacuarembó. Universidade Federal do Paraná (UFPR), PETROBRáS.
    2. Ashley, R. P., & Lloyd, J. W. (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. / Journal of Hydrology, / 39, 355-64. CrossRef
    3. Baccar, N. M. (1998). / Estudo da qualidade da água de po?os artesianos da regi?o do vale do Rio Pardo, com destaque para a concentra??o de fluoretos, / RS, Brasil. Final Paper. Brazil: Universidade de Santa Cruz Sul (in Portuguese).
    4. Bower, C. A., & Hatcher, J. T. (1967). Adsorption of fluoride by soils and minerals. / Soil Sciences, / 103, 151-54. CrossRef
    5. Campos, H. C. N. S. (1999). Modelación conceptual y matemática del Acuífero Guarani, Cono Sur. Mapa idrogeológico do Aqüífero Guarani. / Acta Geologica Leopoldensia, / 23(4), 3-0.
    6. Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí basin, Mexico. / Journal of Hydrology, / 261, 24-7. CrossRef
    7. Carrillo-Rivera, J. J., Cardona, A., & Moss, D. (1996). Importance of the vertical component of groundwater flow: A hydrogeochemical approach in the valley of San Luis Potosi, Mexico. / Journal of Hydrology, / 185, 23-4. CrossRef
    8. Clark, I. D., & Fritz, P. (1997). / Environmental isotopes in hydrology. New York: Lewis Publishing.
    9. Colby, N. D. (1993). The use of 2-way cluster analysis as a tool for delineating trends in hydrogeologic units and development of a conceptual model. In / Paper presented at the 1993 groundwater modeling conference, Golden, Colorado: IGWMC, Color. Sch. Mines.
    10. Dar, M. A., Sankar, K., & Dar, I. A. (2011). Fluorine contamination in groundwater: A major challenge. / Environmental Monitoring Assessment, / 173, 955-68. CrossRef
    11. Davis, J. C. (1986). / Statistics and data analysis in geology (2nd ed.). New York: Wiley.
    12. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., & Magara, Y. (2006). / Fluoride in drinking water. Geneva: World Health Organization.
    13. Fraga, C. G. (1992). / Origem de fluoreto em águas subterraneas dos Sistemas Aqüíferos Botucatu e Serra Geral da Bacia do Paraná. 1992. Thesis, Brazil: Universidade de S?o Paulo (in portuguese).
    14. Gao, X. B., Wang, Y. X., Li, Y. L., & Guo, Q. H. (2007). Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. / Environmental Geology, / 53, 795-03. CrossRef
    15. Geyh, M. (2000). Groundwater: Saturated and unsaturated zone. In W. G. Mook (Ed.), / Environmental isotopes in the hydrological cycle, principles and applications (Vol. 4). Vienna: Unesco, IAEA, International Hydrological Programme (Technical Doc. in Hydrology 39).
    16. Guo, Q. H., Wang, Y. X., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, Northern China. / Journal of Geochemical Exploration, / 93, 1-2. CrossRef
    17. Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwaters in India. / Groundwater, / 13, 275-81. CrossRef
    18. International Atomic Energy Agency [IAEA]. (2005). / Isotope hydrology information system, ISOHIS database. Vienna. http://isohis.iaea.org. Accessed 20 May, 2005.
    19. Invernizzi, A. L., & Oliveira, S. M. B. (2004). Hydrochemical characterization of a watershed through factor analysis. / Revista águas Subterraneas, / 18, 67-7.
    20. Kaiser, H. F. (1958). The Varimax criterion for analytic rotationing factor analysis. / Psychometrika, / 23, 187-00. CrossRef
    21. Kern, M., Pacheco, R., Engelke, V., Kalkreuth, W., Machado, G., & Mexias, et al. (2005). Geochemical and petrographical characterization of black shales from Irati and Ponta Grossa Formations, Paraná Basin, Brazil. In / 57th International Meeting of the International Committee for Coal and Organic Petrology-em class="a-plus-plus">Iccp. Patras. Grecce. Abstracts Book p. 44.
    22. Kim, K., & Jeong, G. Y. (2005). Factors influencing natural occurrence of fluoride-rich groundwaters: A case study in the southeastern part of the Korean Peninsula. / Chemosphere, / 58, 1399-408. CrossRef
    23. Lemes, M. J. L., Figueiredo Filho, P. M., & Pires, M. A. F. (2003). Influência da mineralogia dos sedimentos das bacias hidrográficas dos rios Mogi Gua?u e Pardo na composi??o química das águas de abastecimento público. / Quimica Nova, / 26(1), 13-0. CrossRef
    24. Li, J., Wang, Y., Xie, X., & Su, C. (2012). Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. / Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2012.05.002 .
    25. Lisboa, N. A. (1996). / Fácies, estratifica??es hidrogeoquímicas e seus controladores geológicos em unidades hidrogeológicas do Sistema Aqüífero Serra Geral, na Bacia do Paraná, Rio Grande do Sul. Thesis, Brazil: Universidade Federal do Rio Grande do Sul (in portuguese).
    26. Machado, J. L. F. (2005). / Compartimenta??o espacial e arcabou?o hidroestratigráfico do Sistema Aqüífero Guarani no Rio Grande do Sul. Thesis, Brazil: Universidade do Vale do Rio dos Sinos (in portuguese).
    27. Maclear, L. G. A., Adlem, M., & Libala, M. B. (2003). / Trend analysis of fluoride concentrations in surface water and groundwater: 2000-em class="a-plus-plus">2003. Coelga Devel. Co, Report 258047/6.
    28. Mahlknecht, J., Steinich, B., & León, I. N. (2004). Groundwater chemistry and mass transfers in the independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. / Environmental Geology, / 45(6), 781-95. CrossRef
    29. Marimon, M. P. C., Knoller, K., & Roisenberg, A. (2007). Anomalous fluoride concentration in groundwater—is it natural or pollution? A stable isotope approach. / Isotopes Environmental Health Studies, / 43(2), 165-75. CrossRef
    30. Martinez, M. M., & Silverio da Silva, J. L. (2004). / Avalia??o da vulnerabilidade das águas subterraneas Município de Santa Cruz do Sul, RS/Brasil. Paper presented at 13o Congresso Brasileiro águas Subterraneas, ABAS, Cuiabá (MT), Cd-rom.
    31. Mook, W. G. (2000). Introduction, theory methods review. In W. G. Mook (Ed.), / Environmental isotopes in the hydrological cycle, principles and applications (Vol. 1). Unesco, IAEA, International Hydrological Programme (Technical Doc. in Hydrology 39).
    32. Naseem, S., Rafique, T., Bashir, E., Bhanger, M. I., Laghari, A., & Usmani, T. H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. / Chemosphere, / 78, 1313-321. CrossRef
    33. Pacheco, F. A. L. (1998). Application of correspondence analysis in the assessment of groundwater chemistry. / Mathematical Geology, / 30(2), 129-61. CrossRef
    34. Paralta, E., & Ribeiro, L. (2001). Stochastic modeling and probabilistic risk maps of nitrate pollution in the vicinities of Beja (Alentejo, South Portugal). In / Paper presented at 3rd International Conference on Future Groundwater Resources at Risk, Lisbon.
    35. Purushotham, D., Prakash, M. R., & Rao, A. N. (2011). Groundwater depletion and quality deterioration due to environmental impacts in Maheshwaram watershed of R. R. district, AP (India). / Environmental Earth Sciences, / 62, 1707-721. CrossRef
    36. Ramage, L., Roisenberg, A., & Viero, A. P. (2005). Caracteriza??o hidrogeoquímica do Sistema Aqüífero Granular Cenozóico de Porto Alegre, RS. / Revista Latino-Americana de Hidrogeologia, / 5, 1-.
    37. Roisenberg, C., Viero, A. P., Roisenberg, A., Schwarzbach, M. S., & Morante, I. C. (2003). Caracteriza??o geoquímica e gênese dos principais íons da água subterranea de Porto Alegre. / Revista Brasileira de Recursos Hídricos, / 8(4), 137-47.
    38. Ros, L. F., Sommer, M. G., & Tomazelli, L. J. (1998). Moldes de cristais de gipsita como pseudofósseis no Arenito Botucatu, RS. / Pesquisas em Geociências, / 25(2), 21-7.
    39. Savenko, A. V. (2001). Interaction between clay minerals and fluoride-containing solutions. / Water Resources, / 28(3), 274-77. CrossRef
    40. Saxena, V. K., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: A water-rock interaction study. / Environmental Geology, / 40, 1084-087. CrossRef
    41. Secretaria de Estado da Saúde [SES]. (2005). / Saúde Bucal. http://www.saude.rs.gov.br/das/saude_bucal. Accessed 18 May, 2005.
    42. Sracek, O., & Hirata, R. (2002). Geochemical and stable isotope evolution of the Guarani Aquifer System, state of S?o Paulo, Brazil. / Hydrogeology Journal, / 10, 643-55. CrossRef
    43. SPSS Inc. (1998). / SPSS Base 8.0 for windows user’s guide, copyright 1998 by SPSS Inc, Chicago.
    44. Suk, H., & Lee, K. K. (1999). Characterization of a groundwater hydrochemical system through multivariate analysis: Clustering groundwater zones. / Groundwater, / 37(3), 358-66. CrossRef
    45. Usunoff, E. J. (1990). Rate-limiting steps in the dissolution of fluorite. / Journal of Hydrology, / 112, 319-26. CrossRef
    46. Vidal, A. C., & Kiang, C. H. (2002). Caracteriza??o hidroquímica dos aqüíferos da bacia de Taubaté. / Revista Brasileira de Geociências, / 32(2), 267-76.
    47. Wenzel, W. W., & Blum, W. E. H. (1992). Fluorine speciation and mobility in F-contaminated soils. / Soil Sciences, / 153, 357-64. CrossRef
    48. Wolery, T. J. (1992). / EQ3NR, a computer program for geochemical aqueous speciation- / solubility: Theoretical manual, user guide and related documentation (version 7.0). Lawrence Livermore, National Laboratory.
    49. World Health Organization [WHO]. (2011). / Guidelines for drinking- / water quality (4th ed., Vol. 1: Recommendations). Geneva: World Health Organization.
  • 作者单位:Maria Paula C. Marimon (1) (2)
    Ari Roisenberg (1)
    Alexandra V. Suhogusoff (1)
    Antonio Pedro Viero (1)

    1. Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gon?alves, 9500, Porto Alegre, RS, CEP 91501-970, Brazil
    2. Departamento de Geografia, Universidade do Estado de Santa Catarina, Avenida Madre Benvenuta, 2007, Florianópolis, SC, CEP 88035-001, Brazil
  • ISSN:1573-2983
文摘
High fluoride concentrations (up to 11?mg/L) have been reported in the groundwater of the Guarani Aquifer System (Santa Maria Formation) in the central region of the state of Rio Grande do Sul, Southern Brazil. In this area, dental fluorosis is an endemic disease. This paper presents the geochemical data and the combination of statistical analysis (Principal components and cluster analyses) and geochemical modeling to achieve the hydrogeochemistry of the groundwater and discusses the possible fluoride origin. The groundwater from the Santa Maria Formation is comprised of four different geochemical groups. The first group corresponds to a sodium chloride groundwater which evolves to sodium bicarbonate, the second one, both containing fluoride anomalies. The third group is represented by calcium bicarbonate groundwater, and in the fourth, magnesium is the distinctive parameter. The statistical and geochemical analyses supported by isotopic measurements indicated that groundwater may have originated from mixtures of deeper aquifers and the fluoride concentrations could be derived from rock/water interactions (e.g., desorption from clay minerals).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700