Making a Conducting Metal with Optical Transparency via Coupled Plasmonic-Photonic Nanostructures
详细信息    查看全文
  • 作者:Zhengqi Liu ; Guiqiang Liu ; Mulin Liu ; Shan Huang ; Xiaoshan Liu ; Yan Wang…
  • 关键词:Surface plasmons ; Broadband optical transparency ; Conducting metal ; Plasmonic crystal
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:10
  • 期:5
  • 页码:1195-1200
  • 全文大小:2,707 KB
  • 参考文献:1.Wu H, Kong D, Ruan Z, Hsu P, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 8(6):421-25CrossRef
    2.Zou J, Li CZ, Chang CY, Yip HL, Jen AKY (2014) Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. Adv Mater 26(22):3618-623CrossRef
    3.Zou J, Yip HL, Hau SK, Jen AKY (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Lett 96(20):203301CrossRef
    4.Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667-69CrossRef
    5.Li WD, Hu J, Chou SY (2011) Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt Express 19(21):21098-8CrossRef
    6.Ye YH, Cao Y, Wang ZB, Yan D, Zhang JY (2009) Optical transmission properties of perforated metal films in the middle-infrared range. Appl Phys Lett 94(8):081118CrossRef
    7.Wang QJ, Li J, Huang C, Zhang C, Zhu Y (2005) Enhanced optical transmission through metal films with rotation-symmetrical hole arrays. Appl Phys Lett 87(9):091105CrossRef
    8.Bouillard JS, Einsle J, Dickson W, Rodrigo SG, Carretero-Palacios S, Martin-Moreno L, Garcia-Vidal FJ, Zayats AV (2010) Optical transmission of periodic annular apertures in metal film on high-refractive index substrate: the role of the nanopillar shape. Appl Phys Lett 96(20):201101CrossRef
    9.Li JY, Hua YL, Fu JX, Li ZY (2010) Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films. J Appl Phys 107(7):073101CrossRef
    10.Liu Z, Liu G, Zhou H, Liu X, Huang K, Chen Y, Fu G (2013) Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 24(15):155203CrossRef
    11.Meng ZM, Hu YH, Ju GF, Zhong XL, Ding W, Li ZY (2014) Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams. J Appl Phys 116(4):043106CrossRef
    12.Hua L, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull 36(10):760-65CrossRef
    13.Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K (2014) Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv Mater 26(6):873-77CrossRef
    14.Hsu PC, Kong D, Wang S, Wang H, Welch AJ, Wu H, Cui Y (2014) Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc 136(30):10593-0596CrossRef
    15.Cui Y, He S (2009) Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Opt Lett 34(1):16-8CrossRef
    16.Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(5):2494-498CrossRef
    17.Liu Z, Hang J, Chen J, Yan Z, Tang C, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20(8):9215-225CrossRef
    18.Liu Z, Liu G, Liu X, Chen J, Hu Y, Zhang X, Cai Z (2014) Optical properties of silicon nanocavity-coupled hybrid plasmonic–photonic crystals in the optical region. Mater Lett 118:134-36CrossRef
    19.Beruete M, Sorolla M, Navarro-Cía M, Falcone F, Campillo I, Lomakin V (2007) Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays. Opt Express 15(3):1107-114CrossRef
    20.Baida FI, Van Labeke D (2003) Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays. Phys Rev B 67(15):155314CrossRef
    21.Lin XS, Lan S (2013) Design of optical filters with flat-on-top transmission lineshapes based on two side-coupled metallic grooves. Plasmonics 8(2):283-87CrossRef
    22.Du QG, Sathiyamoorthy K, Zhang LP, Demir HV, Kam CH, Sun XW (2012) A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared. Appl Phys Lett 101(18):181112CrossRef
    23.Navarro-Cía M, Rodriguez-Ulibarri P, Beruete M (2013) Hedgehog subwavelength hole arrays: control over the THz enhanced transmission. New J Phys 15:013003CrossRef
    24.Ameling R, Giessen H (2013) Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photonics Rev 7(2):141-69CrossRef
    25.Shi L, Li H, Du Y, Xie C (2012) Enhanced optical transmission through asymmetric nanostructured gold films. J Opt Soc Am B 29(12):3377-385CrossRef
    26.Baida FI, Labeke DV, Granet G, Moreau A, Belkhir A (2004) Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands. Appl Phys B 79(1):1-CrossRef
    27.Liu Z, L
  • 作者单位:Zhengqi Liu (1)
    Guiqiang Liu (1)
    Mulin Liu (1)
    Shan Huang (1)
    Xiaoshan Liu (1)
    Yan Wang (1)
    Pingping Pan (1)

    1. Institute of Optoelectronic Materials and Technology, Laboratory of Nanomaterials and Sensors, Provincial Key Laboratory of Optoelectronic and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, 330022, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Metallic film structures with simultaneous optical transparency and high electronic conductivity are of great importance for practical optoelectronic applications. Here, we predict a powerful scheme for transparent continuous metal film structure by using a plasmonic cylinder array and a high-index dielectric layer substrate. In the structure, the upper plasmonic crystal shows efficient optical field trapping of the incident light, acting as a light input coupler. The lower photonic layer provides a light release gate opening at the other side, acting as the light output coupler. The achieved broadband optical near-unity transparency (transmittance >94.5 %) originates from the dipole plasmon resonances of the plasmonic crystal, and the cavity resonances by the Fabry-Pérot layer and their cooperative coupling effects. These findings could open a new and simplified alternative approach for highly transparent and conducting metal structures and hold potential applications in transparent conductors, filters, and ultracompact optoelectronic devices. Keywords Surface plasmons Broadband optical transparency Conducting metal Plasmonic crystal

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700