Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field
详细信息    查看全文
  • 作者:Zhengqi Liu ; Guiqiang Liu ; Xiaoshan Liu ; Shan Huang ; Pingping Pan ; Yan Wang…
  • 关键词:Surface plasmons ; Confined field ; Perfect absorber ; Sensor
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:29-36
  • 全文大小:3,003 KB
  • 参考文献:1.Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRef
    2.Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRef
    3.Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 58:267–297CrossRef
    4.Zhu J, Deng XC (2011) Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sens Actuator B 155:843–847CrossRef
    5.Sagle LB, Ruvuna LK, Ruemmele JA, Van Duyne RP (2011) Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6:1447–1462CrossRef
    6.Chen L, Li GC, Liu GY, Dai QF, Lan S, Tie SL, Deng HD (2013) Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod. J Phys Chem C 117:20146–20153CrossRef
    7.Li T, Li Q, Xu Y, Chen XJ, Dai QF, Liu H, Lan S, Tie S, Wu LJ (2012) Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6:1268–1277CrossRef
    8.Khorasaninejad M, Raeis-Zadeh SM, Amarloo H, Abedzadeh N, Safavi-Naeini S, Saini SS (2013) Colorimetric sensors using nano-patch surface plasmon resonators. Nanotechnology 24:355501CrossRef
    9.Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 8:995–1001CrossRef
    10.Lodewijks K, Ryken J, Van Roy W, Borghs G, Lagae L, Dorpe PV (2013) Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics 8:1379–1385CrossRef
    11.Liu Z, Liu G, Liu X, Shao H, Chen J, Huang S, Liu M, Fu G (2015) Multispectral sharp plasmon resonances for polarization-manipulated subtractive polychromatic filtering and sensing. Plasmonics. doi:10.​1007/​s11468-014-9869-y
    12.Nien L, Chao B, Li J, Hsueh C (2015) Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays. Plasmonics. doi:10.​1007/​s11468-014-9840-y
    13.Zhou H, Qiu C, Yu F, Yang H, Chen M, Hu L, Sun L (2011) Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. J Phys Chem C 115:11348–11354CrossRef
    14.Otte MA, Estevez M-C, Carrascosa LG, Gonzalez-Guerrero AB, Lechuga LM, Sepulveda B (2011) Improved biosensing capability with novel suspended nanodisks. J Phys Chem C 115:5344–5351CrossRef
    15.Keathley PD, Hastings JT (2012) Nano-gap-enhanced surface plasmon resonance sensors. Plasmonics 7:59–69CrossRef
    16.Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 17:442–453CrossRef
    17.Willett DR, Chumanov G (2014) LSPR sensor combining sharp resonance and differential optical measurements. Plasmonics 9:1391–1396CrossRef
    18.Liu Z, Liu G, Liu X, Fu G, Liu M (2014) Improved multispectral anti-reflection and sensing of plasmonic slits by silver mirror. IEEE Photonics Technol Lett 26:2111CrossRef
    19.Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun PV, Bhargava R, Rogers JA (2011) Coupling of plasmonic and optical cavity modes in quasi-three dimensional plasmonic crystals. Nat Commun 2:479CrossRef
    20.Katyal J, Soni RK (2014) Localized surface plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures. Plasmonics 9:1171–1181CrossRef
    21.Shen H, Lu G, Zhang T, Liu J, Gu Y, Perriat P, Martini M, Tillement O, Gong Q (2013) Shape effect on a single-nanoparticle based plasmonic nanosensor. Nanotechnology 24:285502CrossRef
    22.Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222CrossRef
    23.Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381
    24.Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116CrossRef
    25.Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116CrossRef
    26.Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRef
    27.Becker J, Truegler A, Jakab A, Hohenester U, Soennichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167CrossRef
    28.Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006CrossRef
    29.Cheng F, Yang X, Gao J (2014) Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt Lett 39:3185–3188CrossRef
    30.Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402CrossRef
    31.Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, USA
    32.Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2013) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328CrossRef
    33.Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762CrossRef
    34.Joshi B, Chakrabarty A, Wei QH (2010) Numerical studies of metal–dielectric–metal nanoantennas. IEEE Trans Nanotechnol 9:701–707CrossRef
    35.Minkowski F, Wang F, Chakrabarty A, Wei QH (2014) Resonant cavity modes of circular plasmonic patch nanoantennas. Appl Phys Lett 104:021111CrossRef
    36.Liu Z, Hang J, Chen J, Yan Z, Tang C, Chen Z, Zhan P (2012) Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express 20:9215–9225CrossRef
    37.Liu Z, Liu G, Shao H, Liu X, Liu M, Huang S, Fu G, Xu H, Gao H (2015) Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals. Mater Lett 140:9–11CrossRef
  • 作者单位:Zhengqi Liu (1)
    Guiqiang Liu (1)
    Xiaoshan Liu (1)
    Shan Huang (1)
    Pingping Pan (1)
    Yan Wang (1)
    Chengwu Zou (1)
    Gang Gu (1)

    1. Provincial Key Laboratory of Nanomaterials and Sensors, Institute of Optoelectronic Materials and Technology, College of Physics and Communication Electronics, Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Jiangxi Normal University, Nanchang, 330022, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
A universal method for improving sensing performance has been computationally studied based on a common triple-layer metal-dielectric-metal (MDM) plasmonic perfect absorber (PA). Calculation results show that the originally idled resonant optical field in the middle dielectric spacer can be exploited to enhance the sensing capability via etching the dielectric spacer to open a channel for analyte. By comparing with the sensitivity (S) of the common PA-based sensor, an enhancement factor up to 5.0 can be achieved for an etched PA-based sensor. Moreover, in order to maintain the mechanical stability of the structure, a modified PA-based sensor platform with a solid support for the suspended plasmonic disks array was further employed to study the sensing properties. In comparison with the referenced sensor without suspension technique, all the three sensing factors of the S, the figure of merit (FOM), and the spectral intensity difference related figure of merit (FOM*) are noticeably improved with the enhancement factors up to 2.5, 3, and 57, respectively. In addition, since there is no special dealing with the structure except the need of hollowing the dielectric spacer to open the sensing channel for the analysis, the predicted method profiles itself as a simple and universal strategy to improve the sensing performance of a wide variety of nanoplasmonic sensors. Keywords Surface plasmons Confined field Perfect absorber Sensor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700