Multi-Band High Refractive Index Susceptibility of Plasmonic Structures with Network-Type Metasurface
详细信息    查看全文
  • 作者:Guiqiang Liu ; Meidong Yu ; Zhengqi Liu ; Pingping Pan ; Xiaoshan Liu ; Shan Huang…
  • 关键词:Plasmonic network structures ; Sensing ; Surface plasmons ; Multi ; band reflection properties
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:677-682
  • 全文大小:1,414 KB
  • 参考文献:1.Li G, Shen Y, Xiao G, Jin C (2015) Double-layered metal grating for high-performance refractive index sensing. Opt Express 23:8995–9003CrossRef
    2.Liu G, Yu M, Liu Z, Liu X, Huang S, Pan P, Wang Y, Liu M, Gu G (2015) One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface enhanced Raman scattering. Nanotechnology 26:185702CrossRef
    3.Lee M, Jeon H, Kim S (2015) A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett 15:3358–3363CrossRef
    4.Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic- metamaterial black absorber during the metallic film-formation. ACS Appl Mater Interfaces 7:4962–4968CrossRef
    5.Zhang W, Wang Y, Luo L, Li G, Zhang Z (2015) Extraordinary optical transmission of broadband through tapered multilayer slits. Plasmonics 10:547–551CrossRef
    6.Liu Z, Liu G, Zhou H, Liu X, Huang K, Chen Y, Fu G (2013) Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 24:155203CrossRef
    7.Chen H, Liu S, Zi J, Lin Z (2015) Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9:1926–1935CrossRef
    8.Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904CrossRef
    9.Sha WEI, Zhu HL, Chen L, Chew WC, Choy WCH (2015) A general design rule to manipulate photocarrier transport path in solar cells and its realization by the plasmonic-electrical effect. Sci Rep 5:8525CrossRef
    10.Du C, Wang B, Sun F, Huang M, He C, Liu Y, Zhang X, Shi D (2015) Refractive index sensitivities of plane Ag nanosphere cluster sensors. Sens Actuat B 215:142–145CrossRef
    11.Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116CrossRef
    12.Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222–4226CrossRef
    13.Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRef
    14.Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRef
    15.Pang C, Koo JH, Nguyen A, Caves JM, Kim MG, Chortos A, Kim K, Wang PJ, Tok JBH, Bao Z (2015) High skin-conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640CrossRef
    16.Thong LV, Loan LTN, Hieu NV (2010) Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sen Actuat B 150:112–119CrossRef
    17.Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, Jiang X, Yu B (2014) Solvothermal synthesis of ZnO-decorated a-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2:13283–13292CrossRef
    18.Mesch M, Zhang C, Braun PV, Giessen H (2015) Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2:475–480CrossRef
    19.Hottin J, Moreau J, Roger G, Spadavecchia J, Millot MC, Goossens M, Canva M (2007) Plasmonic DNA: towards genetic diagnosis chips. Plasmonics 2:201–215CrossRef
    20.Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnology 6:268–276CrossRef
    21.Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRef
    22.Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuat B 54:3–15CrossRef
    23.Liu Z, Nie Y, Yuan W, Liu X, Huang S, Chen J, Gao H, Gu G, Liu G (2015) Optical cavity-assisted broadband optical transparency of a plasmonic metal film. Nanotechnology 26:185701CrossRef
    24.Zhang X, Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Liu X, Gu G, Fu G (2014) Tunable extraordinary optical transmission in a metal film perforated with two-level subwavelength cylindrical hoes. Plasmonics 9:1149–1153CrossRef
    25.Liu Z, Liu G, Liu X, Zhou H, Gu G (2014) Multispectral broadband light transparency of a seamless metal film coated with plasmonic crystals. Plasmonics 9:615–622CrossRef
    26.Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M (2015) Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26:235702CrossRef
    27.Verre R, Yang ZJ, Shegai T, Käll M (2015) Optical magnetism and plasmonic Fano resonances in metal–insulator–metal oligomers. Nano Lett 15:1952–1958CrossRef
    28.Wang X, Morea R, Gonzalo J, Palpant B (2015) Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett 15:2633–2639CrossRef
    29.Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y, Gu G (2015) Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sens Actuat B 215:480–488CrossRef
    30.Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Boston
    31.Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef
    32.Meng X, Guler U, Kildishev AV, Fujita K, Tanaka K, Shalaev VM (2013) Unidirectional spaser in symmetry
    oken plasmonic core-shell nanocavity. Sci Rep 3:1241
    33.Ginzburg P, Zayats AV (2012) Non-exponential decay of dark localized surface plasmons. Opt Express 20:6720–6727CrossRef
    34.Zhang Y, Jia T, Zhang SA, Feng DH, Xu ZZ (2012) Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions. Opt Express 20:2924–2931CrossRef
    35.Ye M, Hu XL, Sun LB, Shi B, Xu Y, Wang LS, Zhao J, Wu YQ, Yang SM, Tai RZ, Jiang JZ, Zhang DX (2015) Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film. J Alloys Compd 621:244–249CrossRef
    36.Zhang X, Liu G, Hu Y, Liu Z, Cai Z, Chen Y, Liu X, Fu G, Gu G, Liu M (2014) Enhanced optical transmission in a plasmonic nanostructure perforated with compound holes and nanorods. Opt Commun 325:105–110CrossRef
    37.Spada LL (2014) Electromagnetic modeling of metamaterial-based sensors. Conference on RF & Wireless Technologies for Biomedical & Healthcare Applications, LondonCrossRef
  • 作者单位:Guiqiang Liu (1)
    Meidong Yu (1)
    Zhengqi Liu (1)
    Pingping Pan (1)
    Xiaoshan Liu (1)
    Shan Huang (1)
    Yan Wang (1)

    1. Provincial Key Laboratory of Nanomaterials and Sensors, Institute of Optoelectronic Materials and Technology, College of Physics and Communication Electronics, Provincial Key Laboratory of Optoelectronic and Telecommunication, Jiangxi Normal University, Nanchang, 330022, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We theoretically propose a simple plasmonic structure with network-type metasurface consisting of double-layer metal-dielectric network-type metasurface on the two-layer dielectric films. Multiple reflection bands with minimum full width at half maximum of 3 nm are achieved in the visible and near-infrared regions due to the excitation and hybridized coupling of localized surface plasmons, photonic mode, and optical cavity mode. The plasmonic structure with network-type metasurface also shows highly tunable refractive index sensing performance. The maximum sensitivity to the refractive index (RI) change reaches to 596 nm/RIU (RIU: refractive index unit). The figure of merit can reach as high as 68.57. These results show that the plasmonic structure with network-type metasurface could pave a new way for the high-performance multi-band devices such as sensors and filters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700