An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma
详细信息    查看全文
  • 作者:Zhaohui Luo (1)
    Liyang Zhang (1)
    Zheng Li (1)
    Xiayu Li (1)
    Gang Li (2)
    Haibo Yu (1)
    Chen Jiang (1)
    Yafei Dai (1)
    Xiaofang Guo (1)
    Juanjuan Xiang (1)
    Guiyuan Li (1)
  • 刊名:BMC Medical Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:1
  • 全文大小:995KB
  • 参考文献:1. Chou J, Lin YC, Kim J, You L, Xu Z, He B, Jablons DM: Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. / Head Neck 2008,30(7):946鈥?63. CrossRef
    2. Lin JC, Liao SK, Lee EH, Hung MS, Sayion Y, Chen HC, Kang CC, Huang LS, Cherng JM: Molecular events associated with epithelial to mesenchymal transition of nasopharyngeal carcinoma cells in the absence of Epstein-Barr virus genome. / J Biomed Sci 2009, 16:105. CrossRef
    3. Tao Y, Bidault F, Bosq J, Bourhis J: Distant metastasis of undifferentiated carcinoma of nasopharyngeal type. / Onkologie 2008,31(11):574鈥?75. CrossRef
    4. Yoshizaki T, Ito M, Murono S, Wakisaka N, Kondo S, Endo K: Current understanding and management of nasopharyngeal carcinoma. / Auris Nasus Larynx 2011.
    5. Baranwal S, Alahari SK: miRNA control of tumor cell invasion and metastasis. / Int J Cancer 2009,126(6):1283鈥?290.
    6. Barker EV, Cervigne NK, Reis PP, Goswami RS, Xu W, Weinreb I, Irish JC, Kamel-Reid S: microRNA evaluation of unknown primary lesions in the head and neck. / Mol Cancer 2009, 8:127. CrossRef
    7. Nugent M, Miller N, Kerin MJ: MicroRNAs in colorectal cancer: Function, dysregulation and potential as novel biomarkers. / Eur J Surg Oncol 2011,37(8):649鈥?54. CrossRef
    8. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. / Cell 2005,120(5):635鈥?47. CrossRef
    9. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA: Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. / Nat Biotechnol 2010,28(4):341鈥?47. CrossRef
    10. Deng M, Tang H, Zhou Y, Zhou M, Xiong W, Zheng Y, Ye Q, Zeng X, Liao Q, Guo X, / et al.: miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. / J Cell Sci 2011,124(Pt 17):2997鈥?005. CrossRef
    11. Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, / et al.: MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. / Cancer Res 2011,71(6):2381鈥?391. CrossRef
    12. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, Chen YC, Peng Y, Yao KT, Kung HF, / et al.: MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. / Cancer Res 2011,71(1):225鈥?33. CrossRef
    13. Ji Y, He Y, Liu L, Zhong X: MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. / FEBS Lett 2010,584(5):961鈥?67. CrossRef
    14. Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, Pan Q, He ML, Li XP: MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. / Cancer Lett 2010,299(1):29鈥?6. CrossRef
    15. Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY, Ho WK, Wei WI, To VS: MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression. / J Cancer Res Clin Oncol 2010,137(3):415鈥?22. CrossRef
    16. Zhang L, Deng T, Li X, Liu H, Zhou H, Ma J, Wu M, Zhou M, Shen S, Niu Z, / et al.: microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. / Carcinogenesis 2010,31(4):559鈥?66. CrossRef
    17. Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW, Kung HF, Lin MC: miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. / Biochem Biophys Res Commun 2009,391(1):535鈥?41. CrossRef
    18. Wong AM, Kong KL, Tsang JW, Kwong DL, Guan XY: Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. / Cancer 2011, in press.
    19. Barth S, Meister G, Grasser FA: EBV-encoded miRNAs. / Biochim Biophys Acta 2011, 1809:631鈥?40.
    20. Chen SJ, Chen GH, Chen YH, Liu CY, Chang KP, Chang YS, Chen HC: Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. / PLoS One 2010,5(9):pii: e12745.
    21. Cho WC: Nasopharyngeal carcinoma: molecular biomarker discovery and progress. / Mol Cancer 2007, 6:1. CrossRef
    22. Barth S, Meister G, Grasser FA: EBV-encoded miRNAs. / Biochim Biophys Acta 2011,1809(11鈥?2):631鈥?40.
    23. Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. / Int J Biochem Cell Biol 2010,42(8):1273鈥?281. CrossRef
    24. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD: Modulation of LMP1 protein expression by EBV-encoded microRNAs. / Proc Natl Acad Sci USA 2007,104(41):16164鈥?6169. CrossRef
    25. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, Chang YS, Chen SJ: MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. / Br J Cancer 2009,100(6):1002鈥?011. CrossRef
    26. Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P: MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. / Proc Natl Acad Sci USA 2008,105(15):5874鈥?878. CrossRef
    27. Li T, Chen JX, Fu XP, Yang S, Zhang Z, Chen Kh H, Li Y: microRNA expression profiling of nasopharyngeal carcinoma. / Oncol Rep 2011,25(5):1353鈥?363.
    28. Olaru AV, Selaru FM, Mori Y, Vazquez C, David S, Paun B, Cheng Y, Jin Z, Yang J, Agarwal R, / et al.: Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. / Inflamm Bowel Dis 2010,17(1):221鈥?31. CrossRef
    29. Bandyopadhyay S, Bhattacharyya M: PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. / BMC Bioinformatics 2010, 11:190. CrossRef
    30. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG: MicroRNA promoter element discovery in Arabidopsis. / RNA 2006,12(9):1612鈥?619. CrossRef
    31. Cho WC: MicroRNAs in cancer - from research to therapy. / Biochim Biophys Acta 2010,1805(2):209鈥?17.
    32. Mao YP, Li WF, Chen L, Sun Y, Liu LZ, Tang LL, Cao SM, Lin AH, Hong MH, Lu TX, / et al.: [A clinical verification of the Chinese 2008 staging system for nasopharyngeal carcinoma]. / Ai Zheng 2009,28(10):1022鈥?028.
    33. Sun Y, Ma J: [Comment for the Chinese 2008 staging system for nasopharyngeal carcinoma]. / Ai Zheng 2009,28(10):1016鈥?021.
    34. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. / Nat Rev Cancer 2008,8(1):37鈥?9. CrossRef
    35. Wright GW, Simon RM: A random variance model for detection of differential gene expression in small microarray experiments. / Bioinformatics 2003,19(18):2448鈥?455. CrossRef
    36. Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW: Metastasis predictive signature profiles pre-exist in normal tissues. / Clin Exp Metastasis 2005,22(7):593鈥?03. CrossRef
    37. Prieto C, Risueno A, Fontanillo C, De las Rivas J: Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. / PLoS One 2008,3(12):e3911. CrossRef
    38. Vermeirssen V, Barrasa MI, Hidalgo CA, Babon JA, Sequerra R, Doucette-Stamm L, Barabasi AL, Walhout AJ: Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. / Genome Res 2007,17(7):1061鈥?071. CrossRef
    39. Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT: Discovery of microRNA-mRNA modules via population-based probabilistic learning. / Bioinformatics 2007,23(9):1141鈥?147. CrossRef
    40. Chen SJ, Chen GH, Chen YH, Liu CY, Chang KP, Chang YS, Chen HC: Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. / PLoS One 2010.,5(9):
    41. Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S, Chang LW, Nagarajan R, Fehniger TA, Goodfellow P, / et al.: Complete characterization of the microRNAome in a patient with acute myeloid leukemia. / Blood 2010,116(24):5316鈥?326. CrossRef
    42. Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. / Nat Struct Mol Biol 2009,16(1):23鈥?9. CrossRef
    43. Xu H, Cheung IY, Guo HF, Cheung NK: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. / Cancer Res 2009,69(15):6275鈥?281. CrossRef
    44. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, Metias S, Rofael Y, Honey RJ, Stewart R, / et al.: The miR-17鈥?2 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. / J Urol 2009,183(2):743鈥?451. CrossRef
    45. Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B, Meijer GA: MiR-17鈥?2 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. / Br J Cancer 2009,101(4):707鈥?14. CrossRef
    46. Adams BD, Cowee DM, White BA: The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. / Mol Endocrinol 2009,23(8):1215鈥?230. CrossRef
    47. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, / et al.: Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. / Biochem Biophys Res Commun 2009,391(1):73鈥?7. CrossRef
    48. Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, / et al.: Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. / BMC Med Genomics 2011, 4:8. CrossRef
    49. Shalgi R, Lieber D, Oren M, Pilpel Y: Global and local architecture of the mammalian microRNA-transcription factor regulatory network. / PLoS Comput Biol 2007,3(7):e131. CrossRef
    50. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/5/3/prepub
  • 作者单位:Zhaohui Luo (1)
    Liyang Zhang (1)
    Zheng Li (1)
    Xiayu Li (1)
    Gang Li (2)
    Haibo Yu (1)
    Chen Jiang (1)
    Yafei Dai (1)
    Xiaofang Guo (1)
    Juanjuan Xiang (1)
    Guiyuan Li (1)

    1. Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, P.R. China
    2. The Li Ka Shing Institute of Health Sciences, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
  • ISSN:1755-8794
文摘
Background MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA (mRNA) and protein synthesis. Recent studies have shown that some miRNAs are involved in the progression of nasopharyngeal carcinoma (NPC). However, the aberrant miRNAs implicated in different clinical stages of NPC remain unknown and their functions have not been systematically studied. Methods In this study, miRNA microarray assay was performed on biopsies from different clinical stages of NPC. TargetScan was used to predict the target genes of the miRNAs. The target gene list was narrowed down by searching the data from the UniGene database to identify the nasopharyngeal-specific genes. The data reduction strategy was used to overlay with nasopharyngeal-specifically expressed miRNA target genes and complementary DNA (cDNA) expression data. The selected target genes were analyzed in the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The microRNA-Gene-Network was build based on the interactions of miRNAs and target genes. miRNA promoters were analyzed for the transcription factor (TF) binding sites. UCSC Genome database was used to construct the TF-miRNAs interaction networks. Results Forty-eight miRNAs with significant change were obtained by Multi-Class Dif. The most enriched GO terms in the predicted target genes of miRNA were cell proliferation, cell migration and cell matrix adhesion. KEGG analysis showed that target genes were significantly involved in adherens junction, cell adhesion molecules, p53 signalling pathway et al. Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-29a/c, miR-34b, miR-34c-3p, miR-34c-5p, miR-429, miR-203, miR-222, miR-1/206, miR-141, miR-18a/b, miR-544, miR-205 and miR-149 may play important roles on the development of NPC. We proposed an integrative strategy for identifying the miRNA-mRNA regulatory modules and TF-miRNA regulatory networks. TF including ETS2, MYB, Sp1, KLF6, NFE2, PCBP1 and TMEM54 exert regulatory functions on the miRNA expression. Conclusions This study provides perspective on the microRNA expression during the development of NPC. It revealed the global trends in miRNA interactome in NPC. It concluded that miRNAs might play important regulatory roles through the target genes and transcription factors in the stepwise development of NPC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700