A study on the evaluation of the geoid-quasigeoid separation term over Pakistan with a solution of first and second order height terms
详细信息    查看全文
  • 作者:Muhammad Sadiq ; Zulfiqar Ahmad ; Gulraiz Akhter
  • 关键词:Geoid ; quasigeoid ; C 1 & C 2 correction terms ; gravity anomaly ; height anomaly ; vertical gravity anomaly gradient
  • 刊名:Earth, Planets and Space
  • 出版年:2009
  • 出版时间:July 2009
  • 年:2009
  • 卷:61
  • 期:7
  • 页码:815-823
  • 全文大小:1474KB
  • 参考文献:Andersen, O. B., L. Anne, Vest, and P. Knudsen, The KMS04 Multi- Mission mean Sea Surface, Proceedings of the Workshop GOCINA: Improving modeling of ocean transport and climate prediction in the North Atlantic region using GOCE gravimetry, April 13-5, 2005, Novotel, Luxembourg, 2005.
    Bian, S., Some cubature formulas for singular integrals in geodesy, J. Geod., 71, 443-53, 1997.CrossRef
    Bian, S. and X. Dong, On the singular integration in physical geodesy, Manuscr. Geod., 16, 283-87, 1991.
    Bursa, M., Report of Special Commission SC3, Fundamental constants, International Association of Geodesy, Paris, 1995.
    F?srste, C., F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. K?nig, K. H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, and J. C. Raimondo, A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data, Poster presented at EGU General Assem. 2005, Vienna, Austria, 24-9, April, 2005, 2005.
    F?srste, C., F. Flechtner, R. Schmidt, R. K?nig, U. Meyer, R. Stubenvoll, M. Rothacher, F. Barthelmes, H. Neumayer, R. Biancale, S. Bruinsma, J.-M. Lemoine, and S. Loyer, A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data—EIGEN-Gl04C, Geophys. Res. Abst., 8, 03462, 2006.
    GETECH, GETECH report on South East Asia Gravity project (SEAGP), GETECH Group plc., Kitson House, Elmete Hall Elmete Lane, Roundhay University of Leeds, LS8 2LJ, U.K., 1995.
    GRAVSOFT, A system for geodetic gravity field modelling, C. C. Tscherning, Department of Geophysics, Juliane Maries Vej 30, DK-2100 Copenhagen N. R. Forsberg and P. Knudsen, Kort og Matrikelstyrelsen, Rentemestervej-8, DK-2400 Copenhagen NV, 2005.
    Heiskanen, W. A. and H. Moritz, Physical Geodesy, Freeman, San Francisco, 1967.
    Helmut, L., A generalized form of Nettletons’s density determination, Geophys. Prospect., 15, 247-58, 1965.
    Huang, J., P. Vanicek, S. Pagiatakis, and W. Brink, Effect of topographical mass density variation on gravity and geoid in the Canadian Rocky Mountains, J. Geodyn., 74, 805-15, 2001.CrossRef
    Hunegnaw, A., The effect of lateral density variation on local geoid determination, Proc. IAG 2001 Sci. Assem., Budapest, Hungary, 2001.
    Kiamehr, R., The impact of lateral density variation model in the determination of precise gravimetric geoid in mountainous areas: a case study of Iran, Geophys. J. Int., 167, 521-27, 2006.CrossRef
    Kuhn, M., GeoidBestimmung unter verwendung verschiedener dichtehypothesen. Deutsche Geodatische Kommission, in Dissertationen, Heft Nr. 520, edited by C. Reihe, Munchen, Gaermany, 2000a.
    Kuhn, M., Density modelling for geoid determination. GGG2000, July 31- August 4, 2000, Alberta, Canada, 2000b.
    Kuhtreiber, N., Precise geoid determination using a density variation model, Phys. Chem. Earth, 23(1), 59-3, 1998.CrossRef
    Lemoine, F. G., D. E. Smith, R. Smith, L. Kunz, N. K. Pavlis, S. M. Klosko, D. S. Chinn, M. H. Torrence, R. G. Williamson, C. M. Cox, K. E. Rachlin, Y. M. Wang, E. C. Pavlis, S. C. Kenyon, R. Salman, R. Trimmer, R. H. Rapp, and R. S. Nerem, The development of thr NASA, GSFC and NIMA joint geopotential model, in Gravzly, Geozd, and Marzne Geod., edited by Segawa, Fugimoto and Okubo, IAG Synzposza 117, Springer-Verlag, Berlin, 461-70, 1997.CrossRef
    Lisitzin, E., Sea level changes, Elsevier, Amsterdam, 1974.
    Martinec, Z., Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada, Contract report for Geodetic Survey of Canada, Ottawa, Canada, 1993.
    Martinec, Z., P. Vanicek, A. Mainville, and M. Veronneau, The effect of lake water on geoidal height, Manuscr. Geod., 20, 193-03, 1995.
    Molodensky, M. S., V. F. Eremeev, and M. I. Yurkina, Methods for the study of the external gravitational field and figure of the Earth, Israeli Program for Scientific Translations, Jerusalem, 1962.
    Nahavandchi, H., Two different methods of geoidal height determinations using a spherical harmonics representation of the geopotential, topographic corrections and height anomaly-geoidal height difference, J. Geod., 76, 345-52, 2002.CrossRef
    Nahavandchi, H. and L. E. Sj?berg, Terrain correction to power H3 in gravimetric geoid determination, J. Geod., 72, 124-35, 1998.CrossRef
    Nafe, L. E. and C. L. Drake, Physical properties of marine sediments, in The sea Interscience, edited by Hill, 794-15, 1963.
    Nettleton, L. L., Elementary gravity and magnetic for geologists and seismologists, SEG Monogr. Ser. l, 121, 1971.
    Noor, E., J. Chen, L. Yulin, and J. Zhang, Report on data processing/ adjustment regarding “A-& “AB-order GPS networks of Pakistan June 15-24, 1997, Survey of Pakistan Rawalpindi, 1997.
    Omang, O. C. D. and R. Forsberg, How to handle topography in practical geoid determination: three examples, J. Geod.
  • 作者单位:Muhammad Sadiq (15)
    Zulfiqar Ahmad (15)
    Gulraiz Akhter (15)

    15. Department of Earth Sciences, Quaid-i-Azam University, Islamabad, Post Code 45320, Pakistan
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
An attempt has been made to evaluate the geoid-quasigeoid separation term over Pakistan by using solutions of terms involving first and second order terrain heights. The first term, involving the Bouguer anomaly, has a significant value and requires being incorporated in any case for determination of the geoid from the quasigoidal solution. The results of the study show that the second term of separation, which involves the vertical gravity anomaly gradient, is significant only in areas with very high terrain elevations and reaches a maximum value of 2- cm. The integration radius of 18 km for the evaluation of the vertical gravity anomaly gradient was found to be adequate for the near zone contribution in the case of the vertical gravity anomaly gradient. The Earth Gravity Model EGM96 height anomaly gradient terms were evaluated to assess the magnitude of the model dependent part of the separation term. The density of the topographic masses was estimated with the linear operator of vertical gravity anomaly gradient using the complete Bouguer anomaly data with an initial arbitrary density of 2.67 g/cm3 to study the effect of variable Bouguer density on the geoid-quasigeoid separation. The density estimates seem to be reasonable except in the area of very high relief in the northern parts. The effect of variable density is significant in the value of the Bouguer anomaly-dependent geoid-quasigeoid separation and needs to be incorporated for its true applicability in the geoid-quasigeoid separation determination. The geoid height (N) was estimated from the geoid-quasigeoid separation term plus global part of height anomaly and terrain-dependant correction terms. The results were compared with the separation term computed from EGM96-derived gravity anomalies and terrain heights to estimate its magnitude and the possible amount of commission and omission effects. Key words Geoid quasigeoid C 1 & C 2 correction terms gravity anomaly height anomaly vertical gravity anomaly gradient

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700