Study of the surface reaction mechanism of Li4Ti5O12 anode for lithium-ion cells
详细信息    查看全文
  • 作者:Jingjing Gao ; Benli Gong ; Qingtang Zhang ; Guodong Wang ; Yangjie Dai ; Weifeng Fan
  • 关键词:Solid ; electrolyte interface ; Li4Ti5O12 ; Gas generation ; Lithium ; ion battery ; Additive
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:21
  • 期:9
  • 页码:2409-2416
  • 全文大小:1,488 KB
  • 参考文献:1.Yi TF, Jiang LJ, Shu J, Yue CB, Zhu RS, Qiao HB (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Sol 71:1236-242CrossRef
    2.Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:1-CrossRef
    3.Kitta M, Akita T, Maeda Y, Kohyama M (2012) Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28:12384-2392CrossRef
    4.Guerfi A, Sévigny S, Lagacé M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119-21:88-4CrossRef
    5.Venkateswarlu M, Chen CH, Do JS, Lin CW, Chou TC, Hwang BJ (2005) Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy. J Power Sources 146:204-08CrossRef
    6.Allen JL, Jow TR, Wolfenstine J (2006) Low temperature performance of nanophase Li4Ti5O12. J Power Sources 159:1340-345CrossRef
    7.Wu K, Yang J, Liu Y, Zhang Y, Wang CY, Xu J, Ning F, Wang D (2013) Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J Power Sources 237:285-90CrossRef
    8.He YB, Liu BH, Zhang C, Lv W, Yang C, Li J, Du HD, Zhang B, Yang QH, Kim JK, Kang FY (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2:1-
    9.Wu K, Yang J, Zhang Y, Wang CY, Wang DY (2012) Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J Applied Electrochem 42:989-95CrossRef
    10.He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269-76CrossRef
    11.He YB, Ning F, Li B, Song QS, Lv W, Du H, Zhai D, Su F, Yang QH, Kang F (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253-61CrossRef
    12.Li X, Qu M, Yu Z (2009) Structural and electrochemical performances of Li4Ti5?xZrxO12 as anode material for lithium-ion batteries. J Alloys Compd 487:L12–L17CrossRef
    13.Li X, Tang S, Qu M, Huang P, Li W, Yu Z (2014) A novel spherically porous Zr-doped spinel lithium titanate (Li4Ti5-xZrxO12) for high rate lithium ion batteries. J Alloys Compd 588:17-4CrossRef
    14.Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) Electrode/Electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion battery. J Phys Chem C 114:10999-1008CrossRef
    15.Dedryvère R, Laruelle S, Grugeon S, Gireaud L, Tarascon J-M, Gonbeau D (2005) XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode. J Electrochem Soc 152:A689–A696CrossRef
    16.Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. J Electrochem Soc 149:A1358–A1369CrossRef
    17.Dedryvère R, Martineza H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J Power Sources 174:462-68CrossRef
    18.Ogumi Z, Sano A, Inaba M, Abe T (2001) Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode. J Power Sources 97-8:156-58CrossRef
    19.Herstedt M, Andersson AM, Rensmo H, Siegbahn H, Edstr?m K (2004) Characterisation of the SEI formed on natural graphite in PC-based electrolytes. Electrochim Aca 49:4939-947CrossRef
    20.Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid St 4:A42–A44CrossRef
    21.Yang CR, Wang YY, Wan CC (1998) Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J Power Sources 72:66-0CrossRef
    22.Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H (1995) The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II. Graphite Electrodes. J Electrochem Soc 142:2882-890CrossRef
    23.Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B (1995) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li Metal Anodes. J Electrochem Soc 142:2873-882CrossRef
    24.Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in nonflammable electrolyte. J Power Sources 119-21: pp. 393-98CrossRef
    25.Belharouak I, Koenig Jr GM, Tan T, Yumoto H, Ota N, Amine K (2012) Performance degradation and ga
  • 作者单位:Jingjing Gao (1) (2) (3)
    Benli Gong (3)
    Qingtang Zhang (4)
    Guodong Wang (1)
    Yangjie Dai (1)
    Weifeng Fan (1)

    1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, People’s Republic of China
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
    3. Sichuan Xingneng New Materials Co., LTD, Guangyuan, 628317, People’s Republic of China
    4. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
The formation of solid-electrolyte interface (SEI) film on the surface of LTO electrode at 25 and 55 °C has been investigated. It is found that the SEI film, which is mainly composed of Li2CO3, LiF, and ROCO2Li, can be formed on the surface of LTO electrode. The differences of SEI film under 25 and 55 °C are further discussed. The results reveal that the temperature has an effect on the morphology of formed SEI film. With the temperature increasing, the decomposition of carbonate species makes the SEI film became thicker and uneven, and also produces C2H4, which is attributed to the swelling of LTO cells at 55 °C. When adding 0.5 wt.% succinonitrile (SN, CN–[CH2]2–CN) in the electrolyte, the gassing behavior of the LTO cells at 3 C rate at 55 °C can be obviously suppressed and the cyclic performance of the cells also improved. Keywords Solid-electrolyte interface Li4Ti5O12 Gas generation Lithium-ion battery Additive

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700