CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing
详细信息    查看全文
  • 作者:Guoguang Zhao (1) (4)
    Dechao Bu (1) (4)
    Changning Liu (1)
    Jing Li (1)
    Jian Yang (3)
    Zhiyong Liu (1)
    Yi Zhao (1)
    Runsheng Chen (1) (2)
  • 关键词:CloudLCA ; metagenome analysis ; cloud computing
  • 刊名:Protein & Cell
  • 出版年:2012
  • 出版时间:February 2012
  • 年:2012
  • 卷:3
  • 期:2
  • 页码:148-152
  • 全文大小:530KB
  • 参考文献:1. Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A., Taylor, J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol, Chapter 19, Unit 19.10 11鈥?1.
    2. Blankenberg, D., Taylor, J., Schenck, I., He, J., Zhang, Y., Ghent, M., Veeraraghavan, N., Albert, I., Miller, W., Makova, K.D., et al. (2007). A framework for collaborative analysis of ENCODE data: making large-scale analyses biologist-friendly. Genome Res 17, 960鈥?64. CrossRef
    3. Huson, D.H., Auch, A.F., Qi, J., and Schuster, S.C. (2007). MEGAN analysis of metagenomic data. Genome Res 17, 377鈥?86. CrossRef
    4. Huson, D.H., Mitra, S., Ruscheweyh, H.J., Weber, N., and Schuster, S.C. (2011). Integrative analysis of environmental sequences using MEGAN4. Genome Res 21, 1552鈥?560. CrossRef
    5. Huson, D.H., Richter, D.C., Mitra, S., Auch, A.F., and Schuster, S.C. (2009). Methods for comparative metagenomics. BMC Bioinformatics 10, S12. CrossRef
    6. L盲mmel, R. (2007). Google鈥檚 MapReduce programming model 鈥?Revisited. Sci Comput Program 68, 208鈥?37.
    7. Langmead, B., Hansen, K.D., and Leek, J.T. (2010). Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11, R83. CrossRef
    8. Metzker, M.L. (2010). Sequencing technologies 鈥?the next generation. Nat Rev Genet 11, 31鈥?6. CrossRef
    9. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al., and the MetaHIT Consortium. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59鈥?5. CrossRef
    10. Schatz, M.C. (2009). CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25, 1363鈥?369. CrossRef
    11. Sudha Sadasivam, G., and Baktavatchalam, G. (2010). A novel approach to multiple sequence alignment using hadoop data grids. Int J Bioinform Res Appl 6, 472鈥?83. CrossRef
    12. Yang, J., Yang, F., Ren, L., Xiong, Z., Wu, Z., Dong, J., Sun, L., Zhang, T., Hu, Y., Du, J., et al. (2011). Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol 49, 3463鈥?469. CrossRef
  • 作者单位:Guoguang Zhao (1) (4)
    Dechao Bu (1) (4)
    Changning Liu (1)
    Jing Li (1)
    Jian Yang (3)
    Zhiyong Liu (1)
    Yi Zhao (1)
    Runsheng Chen (1) (2)

    1. Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
    4. Graduate School of the Chinese Academy of Sciences, Beijing, 100190, China
    3. State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100176, China
    2. Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
文摘
Estimating taxonomic content constitutes a key problem in metagenomic sequencing data analysis. However, extracting such content from high-throughput data of next-generation sequencing is very time-consuming with the currently available software. Here, we present CloudLCA, a parallel LCA algorithm that significantly improves the efficiency of determining taxonomic composition in metagenomic data analysis. Results show that CloudLCA (1) has a running time nearly linear with the increase of dataset magnitude, (2) displays linear speedup as the number of processors grows, especially for large datasets, and (3) reaches a speed of nearly 215 million reads each minute on a cluster with ten thin nodes. In comparison with MEGAN, a well-known metagenome analyzer, the speed of CloudLCA is up to 5 more times faster, and its peak memory usage is approximately 18.5% that of MEGAN, running on a fat node. CloudLCA can be run on one multiprocessor node or a cluster. It is expected to be part of MEGAN to accelerate analyzing reads, with the same output generated as MEGAN, which can be import into MEGAN in a direct way to finish the following analysis. Moreover, CloudLCA is a universal solution for finding the lowest common ancestor, and it can be applied in other fields requiring an LCA algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700