Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology
详细信息    查看全文
  • 作者:Vivian K. Lee (1)
    Alison M. Lanzi (1)
    Haygan Ngo (1)
    Seung-Schik Yoo (3)
    Peter A. Vincent (2)
    Guohao Dai (1)
  • 关键词:3D bio ; printing ; Capillary ; Vasculogenesis ; Angiogenesis ; Vascular lumen ; Hydrogel
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:7
  • 期:3
  • 页码:460-472
  • 全文大小:3,142 KB
  • 参考文献:1. Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. / Nat. Rev. Mol. Cell Biol. 8:464-78, 2007. CrossRef
    2. Boland, T., V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. / Anat. Rec. A 272:497-02, 2003. CrossRef
    3. Borenstein, J. T., E. L. I. J. Weinberg, B. K. Orrick, C. Sundback, M. R. Kaazempur-mofrad, and J. P. Vacanti. Microfabrication of three-dimensional engineered scaffolds. / Tissue Eng. 13:1837-844, 2007. CrossRef
    4. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. / Nature 4:710-20, 2003.
    5. Carmeliet, P. Angiogenesis in health and disease. / Nat. Med. 9:653-60, 2003. CrossRef
    6. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. / Nature 407:249-57, 2000. CrossRef
    7. Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. / Nature 473:298-07, 2011. CrossRef
    8. Chen, X., / et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. / Tissue Eng. Part A 15:1363-371, 2009. CrossRef
    9. Chiu, D. T., / et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. / Proc. Natl. Acad. Sci. U.S.A. 97:2408-413, 2000. CrossRef
    10. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes / in vitro. / Microvasc. Res. 71:185-96, 2006. CrossRef
    11. Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. / Cardiovasc. Res. 49:507-21, 2001. CrossRef
    12. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. / Biomaterials 30:6221-227, 2009. CrossRef
    13. Davis, G. E., and K. J. Bayless. An integrin and rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. / Microcirculation 10:27-4, 2003. CrossRef
    14. Davis, G. E., W. Koh, and A. N. Stratman. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. / Birth Defects Res. C 81:270-85, 2007. CrossRef
    15. Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. / Circ. Res. 97:1093-107, 2005. CrossRef
    16. Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. Endothelialized microvasculature based on a biodegradable elastomer. / Tissue Eng. 11:302-09, 2005. CrossRef
    17. Ghajar, C. M., K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis early matrix metalloproteinase upregulation. / Tissue Eng. 12:2875-888, 2006. CrossRef
    18. Grinnell, F. Fibroblast–collagen–matrix contraction: growth-factor signalling and mechanical loading. / Trends Cell Biol. 10:362-65, 2000. CrossRef
    19. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. / Trends Cell Biol. 13:264-69, 2003. CrossRef
    20. Hsu, Y.-H., M. L. Moya, P. Abiri, C. C. W. Hughes, S. C. George, and A. P. Lee. Full range physiological mass transport control in 3D tissue cultures. / Lab Chip 13:81-9, 2013. CrossRef
    21. Iruela-Arispe, M. L., and G. E. Davis. Cellular and molecular mechanisms of vascular lumen formation. / Dev. Cell 16:222-31, 2009. CrossRef
    22. Kachgal, S., and A. J. Putnam. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. / Angiogenesis 14:47-9, 2011. CrossRef
    23. Kamei, M., W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis, and B. M. Weinstein. Endothelial tubes assemble from intracellular vacuoles / in vivo. / Nature 442:453-56, 2006. CrossRef
    24. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. / Proc. Natl. Acad. Sci. USA 103:2480-487, 2006. CrossRef
    25. Koh, W., A. N. Stratman, A. Sacharidou, and G. E. Davis. / In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. / Methods Enzymol. 443:83-01, 2008. CrossRef
    26. Langer, R. S., and J. P. Vacanti. Tissue engineering: the challenges ahead. / Sci. Am. 280:86-9, 1999. CrossRef
    27. Lee, V., and G. Dai. Micro and nanotechnology in vascular regeneration. In: Tissue and Organ Regeneration—Advances in Micro- and Nanotechnology, edited by G. L. Zhang, T. Webster, and A. Khademhosseini. Singapore: Pan Stanford Publishing, 2014.
    28. Lee, W., / et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. / Biomaterials 30:1587-595, 2009. CrossRef
    29. Lee, W., / et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. / Biotechnol. Bioeng. 105:1178-186, 2010.
    30. Lee, V. K., / et al. Design and fabrication of human skin by 3D bioprinting. / Tissue Eng. Part C 20:473-84, 2014.
    31. Leong, M. F., / et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. / Nat. Commun. 4:2353, 2013. CrossRef
    32. Li, Y.-S. J., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. / J. Biomech. 38:1949-971, 2005. CrossRef
    33. Liu Tsang, V., / et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. / FASEB J. 21:790-01, 2007. CrossRef
    34. Miller, J. S., / et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. / Nat. Mater. 11:768-74, 2012.
    35. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. / Biomaterials 30:2164-174, 2009. CrossRef
    36. Moya, M. L., Y. Hsu, A. P. Lee, C. C. W. Hughes, and S. C. George. / In vitro perfused human capillary networks. / Tissue Eng. Part C 19:730-37, 2013. CrossRef
    37. Nahmias, Y., R. E. Schwartz, C. M. Verfaillie, and D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. / Biotechnol. Bioeng. 92:129-36, 2005. CrossRef
    38. Nakatsu, M. N., and C. C. W. Hughes. An optimized three-dimensional / in vitro model for the analysis of angiogenesis. / Methods Enzymol. 443:65-2, 2008. CrossRef
    39. Nakatsu, M. N., / et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. / Microvasc. Res. 66:102-12, 2003. CrossRef
    40. Nguyen, D.-H. T., / et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis / in vitro. / Proc. Natl. Acad. Sci. USA 110:6712-717, 2013. CrossRef
    41. Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. / J. Biomed. Opt. 18:100501, 2013. CrossRef
    42. Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. / Cell 146:873-87, 2011. CrossRef
    43. Price, G. M., and J. Tien. Chapter 17: methods for forming human microvascular tubes / in vitro and measuring their macromolecular permeability. In: Biological Microarrays: Methods and Protocols, Methods in Molecular Biology, edited by A. Khademhosseini, K.-Y. Suh, and M. Zourob. Totowa, NJ: Humana Press, 2011, pp. 281-93. CrossRef
    44. Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. / Tissue Eng. 16:2255-263, 2010. CrossRef
    45. Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. / Biomaterials 25:3707-715, 2004. CrossRef
    46. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. / Trends Biotechnol. 26:434-41, 2008. CrossRef
    47. Saunders, W. B., / et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. / J. Cell Biol. 175:179-91, 2006. CrossRef
    48. Sekine, H., / et al. / In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. / Nat. Commun. 4:1399, 2013. CrossRef
    49. Shin, Y., / et al. / In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. / Lab Chip 11:2175-181, 2011. CrossRef
    50. Stratman, A. N., K. M. Malotte, R. D. Mahan, M. J. Davis, and G. E. Davis. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. / Blood 114:5091-101, 2009. CrossRef
    51. Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. / Annu. Rev. Biomed. Eng. 14:205-30, 2012. CrossRef
    52. Xu, T., J. Jin, C. Gregory, J. J. J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. / Biomaterials 26:93-9, 2005. CrossRef
    53. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. / Nature 14:407, 2000.
    54. Zhao, L., V. K. Lee, S- S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. / Biomaterials 33:5325-332, 2012. CrossRef
    55. Zheng, Y., / et al. / In vitro microvessels for the study of angiogenesis and thrombosis. / Proc. Natl. Acad. Sci. USA 109:9342-347, 2012. CrossRef
  • 作者单位:Vivian K. Lee (1)
    Alison M. Lanzi (1)
    Haygan Ngo (1)
    Seung-Schik Yoo (3)
    Peter A. Vincent (2)
    Guohao Dai (1)

    1. Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
    3. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
    2. Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, 12208, USA
  • ISSN:1865-5033
文摘
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1?mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700