Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis
详细信息    查看全文
  • 作者:Guohua Shen ; Houfu Deng ; Shuang Hu ; Zhiyun Jia
  • 关键词:Bone metastases ; Prostate cancer ; Positron emission tomography with computed tomography ; MRI ; Bone scintigraphy ; SPECT ; Meta ; analysis
  • 刊名:Skeletal Radiology
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:43
  • 期:11
  • 页码:1503-1513
  • 全文大小:1,956 KB
  • 参考文献:1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10-9. CrossRef
    2. Beheshti M, Vali R, Waldenberger P, et al. The use of 18F-choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446-4. CrossRef
    3. Giovanella L, Castellani M, Suriano S, et al. Multi-field-of-view SPECT is superior to whole-body scanning for assessing metastatic bone disease in patients with prostate cancer. Tumori. 2011;97:629-3.
    4. Zerbib M, Zelefsky MJ, Higano CS, Carroll PR. Conventional treatments of localized prostate cancer. Urology. 2008;72:S25-5. CrossRef
    5. Berry WR. The evolving role of chemotherapy in androgen-independent (hormone-refractory) prostate cancer. Urology. 2005;65:2-. CrossRef
    6. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341-8. CrossRef
    7. Beheshti M, Pirich C, Langsteger W. Conventional 99mTc-based bone scan versus fluoride positron emission tomography combined with computed tomography in the assessment of bone metastases in prostate cancer patients. Imaging Decisions MRI. 2009;13:88-6. CrossRef
    8. Kosuda S, Kaji T, Yokoyama H, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med. 1996;37:975-.
    9. Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single-photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol. 2008;15:516-. CrossRef
    10. Ghanem N, Uhl M, Brink I, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005;55:41-5. CrossRef
    11. Lecouvet FE, Geukens D, Stainier A, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25:3281-. CrossRef
    12. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with sup 18 fluorine-labeled deoxyglucose. J Urol. 1996;155:994-. CrossRef
    13. Richter JA, Rodríguez M, Rioja J, et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol Imaging Biol. 2010;12:210-. CrossRef
    14. Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate-to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2012;63:1040-. CrossRef
    15. Berlin JA. Does blinding of readers affect the results of meta-analyses? Lancet. 1997;350:185-. CrossRef
    16. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25. CrossRef
    17. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:9. CrossRef
    18. Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non–small–cell lung cancer patients. Int J Cancer. 2013;132:E37-7. CrossRef
    19. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-Fluoride PET/CT. J Nucl Med. 2006;47:287-7.
    20. Fuccio C, Castellucci P, Schiavina R, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med. 2010;24:485-2. CrossRef
    21. Lecouvet FE, El Mouedden J, Collette L, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace 99mTc bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68-5. CrossRef
    22. McCarthy M, Siew T, Campbell A, et al. 18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38:14-2. CrossRef
    23. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H. Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199:1114-0. CrossRef
    24. Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single-photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol. 2008;15:516-. CrossRef
    25. Picchio M, Fallanca F, Spinapolice E, et al. Comparison of 11C-choline PET/CT and bone scintigraphy in the detection of bone metastasis in patients with biochemical failure after primary treatment for prostate cancer. Eur J Nucl Med Mol Imaging. 2010;37:S269.
    26. Picchio M, Spinapolice E, Fallanca F, et al. 11C-choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13-6. CrossRef
    27. Poulsen MH, Petersen H, Hoilund-Carlsen PF, et al. Detection of bone metastases from prostate cancer: a prospective study of 99mTc-MDP bone scintigraphy, 18F-fluorocholine PET/CT, 18F-fluoride PET/CT compared with MRI. Eur Urol Suppl. 2012;11:e892. CrossRef
    28. Takesh M, Zechmann C, Haufe S, Afshar A, Haberkorn U. Diagnostic role of 18F-fluoroethylcholine-PET/CT compared with bone-scan in evaluating the prostate cancer patients referring with biochemical recurrence. Eur J Nucl Med Mol Imaging. 2011;38:S138. CrossRef
    29. Venkitaraman R, Cook GJ, Dearnaley DP, et al. Does magnetic resonance imaging of the spine have a role in the staging of prostate cancer? Clin Oncol. 2009;21:39-2. CrossRef
    30. Venkitaraman R, Cook GJ, Dearnaley DP, et al. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol. 2009;53:241-. CrossRef
    31. Wang XY, Zhang CY, Jiang XX. Prospective study of bone metastasis from prostate cancer: comparison between large field diffusion-weighted imaging and bone scintigraphy [Chinese]. Chin J Radiol. 2009;43:131-.
    32. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766-4. CrossRef
    33. Langsteger W, Balogova S, Huchet V, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55:448-7.
    34. Liu T, Xu JY, Xu W, Bai YR, Yan WL, Yang HL. 18Fluorine deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best?—a meta-analysis. Clin Oncol. 2011;23:350-. CrossRef
    35. Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39:396-07. CrossRef
    36. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med. 2005;35:135-2. CrossRef
    37. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122-. CrossRef
    38. Rigaud J, Tiguert R, Le Normand L, et al. Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol. 2002;168:1423-. CrossRef
    39. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48:18N-1N.
    40. Tryciecky EW, Gottschalk A, Ludema K. Oncologic imaging: interactions of nuclear medicine with CT and MRI using the bone scan as a model. Semin Nucl Med. 1997;27:142-1. CrossRef
    41. Gosfield 3rd E, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med. 1993;34:2191-.
    42. Horiuchi-Suzuki K, Konno A, Ueda M, et al. Skeletal affinity of Tc (V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging. 2004;31:388-8. CrossRef
    43. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927-3. CrossRef
    44. Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E. The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res. 2000;20:1115-0.
    45. Han L, Au-Yong T, Tong W, Chu K, Szeto L, Wong C. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635-. CrossRef
    46. Reinartz P, Schaffeldt J, Sabri O, et al. Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPET. Eur J Nucl Med. 2000;27:721-. CrossRef
    47. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol. 2001;177:229-6. CrossRef
    48. Vogler III JB, Murphy WA. Bone marrow imaging. Radiology. 1988;168:679-3. CrossRef
    49. Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate. 2005;65:178-7. CrossRef
    50. Traill Z, Talbot D, Golding S, Gleeson FV. Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol. 1999;54:448-1. CrossRef
    51. Cumming J, Hacking N, Fairhurst J, Ackery D, Jenkins J. Distribution of bony metastases in prostatic carcinoma. Brit J Urol. 1990;66:411-4. CrossRef
    52. Lecouvet F, Simon M, Tombal B, Jamart J, Berg BV, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol. 2010;20:2973-2. CrossRef
    53. Freedman GM, Negendank WG, Hudes GR, Shaer AH, Hanks GE. Preliminary results of a bone marrow magnetic resonance imaging protocol for patients with high-risk prostate cancer. Urology. 1999;54:118-3. CrossRef
    54. Sch?der H, Herrmann K, G?nen M, et al. 2-[18F] fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11:4761-. CrossRef
    55. Liu IJ, Zafar MB, Lai Y-H, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108-1. CrossRef
    56. Oyama N, Akino H, Suzuki Y, et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun. 2001;22:963-. CrossRef
    57. Emonds K, Swinnen J, Mortelmans L, Mottaghy F. Molecular imaging of prostate cancer. Methods. 2009;48:193-. CrossRef
    58. Liu N, Ma L, Zhou W, et al. Bone metastasis in patients with non-small cell lung cancer: the diagnostic role of F-18 FDG PET/CT. Eur J Radiol. 2010;74:231-. CrossRef
    59. Liu T, Cheng T, Xu W, Yan W-L, Liu J, Yang H-L. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol. 2011;40:523-1. CrossRef
  • 作者单位:Guohua Shen (1)
    Houfu Deng (1)
    Shuang Hu (1)
    Zhiyun Jia (1)

    1. Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People’s Republic of China
  • ISSN:1432-2161
文摘
Published data on the diagnosis of bone metastases of prostate cancer are conflicting and heterogeneous. We performed a comprehensive meta-analysis to compare the diagnostic performance of choline-PET/CT, MRI, bone SPECT, and bone scintigraphy (BS) in detecting bone metastases in parents with prostate cancer. Pooled sensitivity, specificity, and diagnostic odds ratios (DOR) were calculated both on a per-patient basis and on a per-lesion basis. Summary receiver operating characteristic (SROC) curves were also drawn to obtain the area under curve (AUC) and Q* value. Sixteen articles consisting of 27 studies were included in the analysis. On a per-patient basis, the pooled sensitivities by using choline PET/CT, MRI, and BS were 0.91 [95?% confidence interval (CI): 0.83-.96], 0.97 (95?% CI: 0.91-.99), 0.79 (95?% CI: 0.73-.83), respectively. The pooled specificities for detection of bone metastases using choline PET/CT, MRI, and BS, were 0.99 (95?% CI: 0.93-.00), 0.95 (95?% CI: 0.90-.97), and 0.82 (95?% CI: 0.78-.85), respectively. On a per-lesion basis, the pooled sensitivities of choline PET/CT, bone SPECT, and BS were 0.84 (95?% CI: 0.81-.87), 0.90 (95?% CI: 0.86-.93), 0.59 (95?% CI: 0.55-.63), respectively. The pooled specificities were 0.93 (95?% CI: 0.89-.96) for choline PET/CT, 0.85 (95?% CI: 0.80-.90) for bone SPECT, and 0.75 (95?% CI: 0.71-.79) for BS. This meta-analysis indicated that MRI was better than choline PET/CT and BS on a per-patient basis. On a per-lesion analysis, choline PET/CT with the highest DOR and Q* was better than bone SPECT and BS for detecting bone metastases from prostate cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700