Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes
详细信息    查看全文
  • 作者:Shaohua Shen (12) shshen_xjtu@mail.xjtu.edu.cn
    Coleman X. Kronawitter (2)
    Jiangang Jiang (1)
    Samuel S. Mao (2)
    Liejin Guo (1) lj-guo@mail.xjtu.edu.cn
  • 关键词:Surface tuning – ; hematite – ; nanorods – ; photoanodes
  • 刊名:Nano Research
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:5
  • 期:5
  • 页码:327-336
  • 全文大小:662.0 KB
  • 参考文献:1. Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.
    2. Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 2008, 18, 2298–2303.
    3. Kronawitter, C. X.; Vayssieres, L.; Shen, S. H.; Guo, L. J.; Wheeler, D. A.; Zhang, J. Z.; Antoun, B. R.; Mao, S. S. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ. Environ. Sci. 2011, 4, 3889–3899.
    4. Sivula, K.; Le Formal, F.; Gr盲tzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.
    5. Park, H. G.; Holt, J. K. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energ. Environ. Sci. 2010, 3, 1028–1036.
    6. van de Krol, R.; Liang, Y. Q.; Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18, 2311–2320.
    7. Kronawitter, C. X.; Mao, S. S.; Antoun, B. R. Doped, porous iron oxide films and their optical functions and anodic photo-currents for solar water splitting. Appl. Phys. Lett. 2011, 98, 092108.
    8. Kay, A.; Cesar, I.; Gr盲tzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721.
    9. Ingler, W. B.; Baltrus, J. P.; Khan, S. U. M. Photoresponse of p-type zinc-doped iron(III) oxide thin films. J. Am. Chem. Soc. 2004, 126, 10238–10239.
    10. Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900–15907.
    11. Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488.
    12. Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.
    13. Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energ. 2011, 36, 2777–2784.
    14. Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E. W. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 2008, 20, 3803–3805.
    15. Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Investigation of ceramic Fe2O3〈Ta〉 photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energ. 2002, 27, 33–38.
    16. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
    17. Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.
    18. Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P. Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J. Mater. Chem. 2011, 21, 10792–10800.
    19. Morrish, R.; Rahman, M.; MacElroy, J. M. D.; Wolden, C. A. Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 2011, 4, 474–479.
    20. Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 2009, 113, 6327–6359.
    21. Feng, X. J.; LaTempa, T. J.; Basham, J. I.; Mor, G. K.; Varghese, O. K.; Grimes, C. A. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 2010, 10, 948–952.
    22. Spurgeon, J. M.; Boettcher, S. W.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible, polymer-supported, Si wire array photoelectrodes. Adv. Mater. 2010, 22, 3277–3281.
    23. Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.
    24. Zhang, Z. H.; Hossain, M. F.; Takahashi, T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal. B: Environ. 2010, 95, 423–429.
    25. Mao, A.; Shin, K.; Kim, J. K.; Wang, D. H.; Han, G. Y.; Park, J. H. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: Nanorods versus nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 1852–1858.
    26. Lindgren, T.; Wang, H. L.; Beermann, N.; Vayssieres, L.; Hagfeldt, A.; Lindquist, S. E. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energ. Mater. Sol. C. 2002, 71, 231–243.
    27. Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 2001, 13, 233–235.
    28. de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.
    29. Sartoretti, C. J.; Ulmann, M.; Alexander, B. D.; Augustynski, J.; Weidenkaff, A. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Chem. Phys. Lett. 2003, 376, 194–200.
    30. Zoppi, A.; Lofrumento, C.; Castellucci, E. M.; Migliorini, M. G. The Raman spectrum of hematite: Possible indicator for a compositional or firing distinction among Terra Sigiliata wares. Ann. Chim. 2005, 95, 239–246.
    31. Tarassov, M.; Mihailova, B.; Tarassova, E.; Konstantinov, L. Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria. Eur. J. Mineral. 2002, 14, 977–986.
    32. Khan, S. U. M.; Akikusa, J. Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 1999, 103, 7184–7189.
    33. Souza, F. L.; Lopes, K. P.; Nascente, P. A. P.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energ. Mater. Sol. C. 2009, 93, 362–368.
    34. Bj枚rkst茅n, U.; Moser, J.; Gr盲tzel, M. Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 1994, 6, 858–863.
    35. Zou, B. S.; Volkov, V. Surface modification on time-resolved fluorescences of Fe2O3 nanocrystals. J. Phys. Chem. Solids 2000, 61, 757–764.
    36. Fei, H.; Ai, X.; Gao, M.; Yang, Y.; Zhang, T.; Shen, J. Luminescence of coated α-Fe2O3 nanoparticles. J. Lumin. 1996, 66–67, 345–348.
    37. Zou, B. S.; Huang, W.; Han, M. Y.; Li, S. F. Y.; Wu, X. C.; Zhang, Y.; Zhang, J. S.; Wu, P. F.; Wang, R.Y. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. J. Phys. Chem. Solids 1997, 58, 1315–1320.
    38. He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71, 125411.
    39. Zhang, Y.; Liu, W. J.; Wu, C. F.; Gong, T.; Wei, J. Q.; Ma, M. X.; Wang, K. L.; Zhong, M. L.; Wu, D. H. Photoluminescence of Fe2O3 nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes. Mater. Res. Bull. 2008, 43, 3490–3494.
    40. Hahn, N. T.; Mullins, C. B. Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 2010, 22, 6474–6482.
    41. Vayssieres, L. On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnology 2004, 1, 1–41.
    42. Spray, R. L.; McDonald, K. J.; Choi, K. S. Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 2011, 115, 3497–3506.
  • 作者单位:1. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi鈥檃n Jiaotong University, Shaanxi, 710049 China2. Department of Mechanical Engineering, University of California at Berkeley, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Hematite (α-Fe2O3) nanorod films with their surface tuned by W6+ doping have been investigated as oxygen-evolving photoanodes in photoelectrochemical cells. X-ray diffraction, field emission scanning electron microscopy, UV-visible absorption spectroscopy, and photoelectrochemical (PEC) measurements have been performed on the undoped and W6+-doped α-Fe2O3 nanorod films. W6+ doping is found to primarily affect the photoluminescence properties of α-Fe2O3 nanorod films. Comparisons are drawn between undoped and W6+-doped α-Fe2O3 nanorod films, WO3 films, and α-Fe2O3-modified WO3 composite electrodes. A close correlation between dopant concentration, photoluminescence intensity, and anodic photocurrent was observed. It is suggested that W6+ surface doping promotes charge transfer in α-Fe2O3 nanorods, giving rise to the enhanced PEC performance. These results suggest surface tuning via ion doping should represent a viable strategy to further improve the efficiency of α-Fe2O3 photoanodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700