Investigation of LRS dependence on the retention of HRS in CBRAM
详细信息    查看全文
  • 作者:Xiaoxin Xu (1)
    Hangbing Lv (1)
    Hongtao Liu (1)
    Qing Luo (1)
    Tiancheng Gong (1)
    Ming Wang (1)
    Guoming Wang (1)
    Meiyun Zhang (1)
    Yang Li (1)
    Qi Liu (1)
    Shibing Long (1)
    Ming Liu (1)

    1. Laboratory of Nano-Fabrication and Novel Devices Integrated Technology
    ; Institute of Microelectronics ; Chinese Academy of Sciences ; #3 Beitucheng West Road ; Chaoyang District ; Beijing ; 100029 ; China
  • 关键词:Resistive random access memory (RRAM) ; High resistance state (HRS) ; Retention ; Quantum point contact (QPC) model
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:2,480 KB
  • 参考文献:1. Waser, R, Dittmann, R, Staikov, G, Szot, K (2009) Redox-based resistive switching memories鈥攏anoionic mechanisms, prospects, and challenges. Adv Mater 21: pp. 2632-63 CrossRef
    2. Yang, JJ, Strukov, DB, Stewart, DR (2013) Memristive devices for computing. Nat Nanotechnol 8: pp. 13 CrossRef
    3. Prakash, A, Jana, D, Maikap, S (2013) TaOx based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8: pp. 418 CrossRef
    4. Lv, HB, Wan, HJ, Tang, TA (2010) Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett 31: pp. 978-80 CrossRef
    5. Liu, Q, Sun, J, Lv, HB, Long, SB, Yin, KB, Wan, N (2011) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 24: pp. 1844-9 CrossRef
    6. Guan, WH, Liu, M, Long, SB, Liu, Q, Wang, W (2008) On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl Phys Lett 93: pp. 223506 CrossRef
    7. Peng, CN, Wang, CE, Chan, TC, Chang, WY, Wang, YC, Tsai, HW (2012) Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Res Lett 7: pp. 559 CrossRef
    8. Torrezan, AC, Strachan, JP, Medeiros, RG, Williams, RS (2011) Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnol 22: pp. 485203 CrossRef
    9. Liu HT, Lv HB, Xu XX, Liu RY, Li L, Long SB et al. Gate induced resistive switching in 1T1R structure with improved uniformity and better data retention. Proc. IEEE Int. Memory Workshop, Taiwan, 2014:1鈥?.
    10. Belmonte, A, Kim, W, Chan, BT, Heylen, N, Fantini, A, Houssa, M (2013) A thermally stable and high-performance 90-nm Al2O3\Cu-based 1T1R CBRAM cell. IEEE Trans Electron Devices 60: pp. 3690-5 CrossRef
    11. Yang, LM, Song, YL, Liu, Y, Wang, YL, Tian, XP, Wang, M (2012) Linear scaling of reset current down to 22-nm node for a novel CuxSiyO RRAM. IEEE Electron Device Lett 33: pp. 89-91 CrossRef
    12. Ielmini, D, Nardi, F, Cagli, C, Lacaita, AL (2010) Size-dependent retention time in NiO-based resistive-switching memories. IEEE Electron Device Lett 31: pp. 353-5 CrossRef
    13. Larentis, S, Cagli, C, Nardi, F, Ielmini, D (2011) Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron Eng 88: pp. 1119-23 CrossRef
    14. Guy J, Molas G, Vianello E, Longnos F, Blanc S, Carabasse C et al. nvestigation of the physical mechanisms governing data-retention in down to 10聽nm nano-trench Al2O3/CuTeGe conductive bridge RAM (CBRAM). Tech Dig Int Electron Devices Meet. Washington DC, 2013:13鈥?42
    15. Muraoka S, Ninomiya T, Wei Z, Katayama K, Yasuhara R, Takagi T. Comprehensive understanding of conductive filament characteristics and retention properties for highly reliable ReRAM. Symposium on VLSI Technol (VLSIT), Kyoto, Japan, 2013:62鈥?3
    16. Wei ZG, Takagi T, Kanzawa Y, Katoh Y, Ninomiya T, Kawai K et al. Retention model for high-density ReRAM. Proc. IEEE Int. Memory Workshop, Milan, Italy, 2012:1鈥?
    17. Rahaman, SZ, Maikap, S, Tien, TC, Lee, HY, Chen, WS, Chen, FT (2012) Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOX interface. Nanoscale Res Lett 7: pp. 345 CrossRef
    18. Ninomiya, T, Wei, ZG, Muraoka, S, Yasuhara, R, Katayama, K, Takagi, T (2013) Conductive filament scaling of TaOX bipolar ReRAM for improving data retention under low operation current. IEEE Trans Electron Device 60: pp. 1384-9 CrossRef
    19. Wei ZG, Kanzawa Y, Arita K, Katoh Y, Kawai K, Muraoka S. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. Tech Dig Int Electron Devices Meet. San Francisco, CA, 2008:1鈥?
    20. Barci M, Guy J, Molas G, Vianello E, Toffoli A, Cluzel J, et al. Perniola L. Salvo BD: Impact of SET and RESET conditions on CBRAM high temperature data retention. IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 2014:p.5E.3.1鈥?.
    21. Symanczyk, R, Bruchhaus, R, Dittrich, R, Kund, M (2009) Investigation of the reliability behavior of conductive-bridging memory Cells. IEEE Trans Electron Device 8: pp. 876-8 CrossRef
    22. Chen, YY, Goux, L, Clima, S, Govoreanu, B, Degraeve, R, Kar, GS (2013) Endurance/retention trade-off on HfO2/metal cap 1T1R bipolar RRAM. IEEE Trans Electron Device 60: pp. 1114-21 CrossRef
    23. Yu, SM, Wong, HSP (2011) Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans Electron Device 58: pp. 1352-60 CrossRef
    24. Ielmini, D, Nardi, F, Balatti, S (2012) Evidence for voltage-driven set/reset processes in bipolar switching RRAM. IEEE Trans Electron Device 59: pp. 2049-56 CrossRef
    25. Huang, YC, Tsai, WL, Chou, CH, Wan, CY, Cheng, HC (2013) High-performance programmable metallization cell memory with the pyramid-structured electrode. IEEE Electron Device Lett 34: pp. 1244-6 CrossRef
    26. Kund M, Beitel G, Pinnow CU, Rhr T, Schumann J, Symanczyk R et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20聽nm. Tech Dig Int Electron Devices Meet. Washington DC, 2005: 754鈥?57
    27. Prakash, A, Maikap, S, Chiu, HC, Tien, TC, Lai, CS (2013) Retraction: enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface. Nanoscale Res Lett 8: pp. 419 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
The insufficient retention prevents the resistive random access memory from intended application, such as code storage, FPGA, encryption, and others. The retention characteristics of high resistance state (HRS) switching from different low resistance state (LRS) were investigated in a 1-kb array with one transistor and one resistor configuration. The HRS degradation was found strongly dependent on the LRS: the lower the resistance of the LRS (R LRS) is, the worse HRS retention will be. According to the quantum point contact model, the HRS corresponds to a tiny tunnel gap or neck bridge with atomic size in the filament. The degradation of HRS is due to the filling or widening of the neck point by the diffusion of copper species from the residual filament. As the residual filament is stronger in case of the lower R LRS, the active area around the neck point for copper species diffusion is larger, resulting in higher diffusion probability and faster degradation of HRS during the temperature-accelerated retention measurement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700