The effect of cold, acid and ethanol shocks on synthesis of membrane fatty acid, freeze-drying survival and malolactic activity of Oenococcus oeni
详细信息    查看全文
  • 作者:Guoqiang Zhang (1) (2)
    Mingtao Fan (1)
    Qian Lv (1)
    Yahui Li (1)
    Yanlin Liu (1)
    Shuangfeng Zhang (1)
    Hua Zhang (1)
  • 关键词:Oenococcus oeni ; Stress shock ; Freeze ; drying viability ; Fatty acid composition ; Malolactic activity
  • 刊名:Annals of Microbiology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:63
  • 期:2
  • 页码:477-485
  • 全文大小:233KB
  • 参考文献:1. 脕lvarez-Ord贸帽ez A, Fern谩ndez A, L贸pez M, Arenas R, Bernardo A (2008) Modifications in membrane fatty acid composition of / Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 123:212鈥?19 CrossRef
    2. 脕lvarez-Ord贸艌ez A, Fern谩ndez A, L贸pez M, Bernardo A (2009) Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed / Salmonella senftenberg CECT 4384. Food Microbiol 26:347鈥?53 CrossRef
    3. Annous BA, Kozempel MF, Kurantz MJ (1999) Changes in membrane fatty acid composition of / Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl Environ Microbiol 65:2857鈥?862
    4. Beal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of / Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84:2347鈥?356 CrossRef
    5. Beltramo C, Desroche N, Tourdot-Mar茅chal R (2006) Real-time PCR for characterizing the stress response of / Oenococcus oeni in a wine-like medium. Res Microbiol 157:267鈥?74 CrossRef
    6. Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of / Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163鈥?73 CrossRef
    7. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14:835鈥?47 CrossRef
    8. Casadei MA, Ma帽as P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of / Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965鈥?972 CrossRef
    9. Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of / Escherichia coli. Mol Microbiol 33:249鈥?59 CrossRef
    10. Chu-Ky S, Tourdot-Marechal R, Marechal PA, Guzzo J (2005) Combined cold, acid, ethanol shocks in / Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717:118鈥?24 CrossRef
    11. Cosette G, Assad-Garc铆a JS, Chu-Ky S, Tollot M, Guzzo J, Tourdot-Mar茅chal R (2008) Changes in membrane lipid composition in ethanol-and acid-adapted / Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation. Microbiol 154:2611鈥?619 CrossRef
    12. da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed / Oenococcus oeni cells. Appl Environ Microbiol 69:5826鈥?832 CrossRef
    13. da Silveira MG, Baumgartner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of / Oenococcus oeni. Appl Environ Microbiol 70:2748鈥?755 CrossRef
    14. Drici-Cachon Z, Guzzo J, Cavin JF, Divi猫s C (1996) Effect of pH and age of culture on cellular fatty acid composition of / Leuconostoc oenos. Lett Appl Microbiol 44:785鈥?89
    15. Fern谩ndez ML, Cabrera G, Font de Valdez A, Disalvo A, Seldes AM (2000) Influence of growth temperature on cryotolerance and lipid composition of / Lactobacillus acidophilus. J Appl Microbiol 88:342鈥?48 CrossRef
    16. Garbay S, Lonvaud-Funel A (1996) Response of / Leuconostoc oenos to environmental changes. J Appl Bacteriol 81:619鈥?25
    17. Garbay S, Rozes N, Lonvaud-Funel A (1995) Fatty acid composition of / Leuconostoc oenos, incidence of growth conditions and relationship with malolactic efficiency. Food Microbiol 12:387鈥?95 CrossRef
    18. G贸mez ZA, Disalvo EA, De Antoni GL (2000) Fatty acid composition and freeze-thaw resistance in lactobacilli. J Dairy Res 67:241鈥?47 CrossRef
    19. Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine鈥揵etaine transport in / Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47鈥?1 CrossRef
    20. Li H, Zhang CH, Liu YL (2006) Species attribution and distinguishing strains of / Oenococcus oeni isolated from Chinese wines. World J Microbiol Biotechnol 22:515鈥?18 CrossRef
    21. Li C, Zhao JL, Wang YT, Han X, Liu N (2009a) Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of / Lactobacillus bulgaricus L2 at different growth conditions. World J Microbiol Biotechnol 25:1659鈥?665 CrossRef
    22. Li H, Zhao WY, Wang H, Li ZC, Wang AL (2009b) Influence of culture pH on freeze-drying viability of / Oenococcus oeni and its relationship with fatty acid composition. Food Bioprod Process 87:56鈥?1 CrossRef
    23. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317鈥?31 CrossRef
    24. Machado MC, Lopez CS, Heras H, Rivas EA (2004) Osmotic response in / Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422:61鈥?0 CrossRef
    25. Maicas S (2001) The use of alternative technologies to develop malolactic fermentation in wine. Appl Microbiol Biotechnol 56:35鈥?9 CrossRef
    26. Maicas S, Pardo I, Ferrer S (2000) The effects of freezing and freeze-drying of / Oenococcus oeni upon induction of malolactic fermentation in red wine. Int J Food Sci Technol 35:75鈥?9 CrossRef
    27. Montanari C, Kamdema SL, Serrazanetti DI, Etbo FX, Guerzoni ME (2010) Synthesis of cyclopropane fatty acids in / Lactobacillus helveticus and / Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiol 27:493鈥?02 CrossRef
    28. Mu艌oz-Rojas J, Bernal P, Duque E, Godoy P, Segura A (2006) Involvement of cyclopropane fatty acids in the response of / Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 72:472鈥?77 CrossRef
    29. Nielsen JC, Parhl C, Lonvaud-Funel A (1996) Malolactic fermentation in wine by direct inoculation with freeze-dried / Leuconostoc oenos cultures. Am J Enol Viticul 47:42鈥?8
    30. Palmfeldt J, Hahn Hagerdal B (2000) Influence of culture pH on survival of / Lactobacillus reuteri subjected to freeze-drying. Int J Food Microbiol 55:235鈥?38 CrossRef
    31. Rozes N, Garbay S, Denayrolles M, Lonvaud-Funel A (1993) A rapid method for the determination of bacterial fatty acid composition. Lett Appl Microbiol 17:126鈥?31 CrossRef
    32. Schoug 脜, Fischer J, Hermann JH, Schn眉rer J, H氓kansson S (2008) Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of / Lactobacillus coryniformis Si3. J Ind Microbiol Biotechnol 35:175鈥?81 CrossRef
    33. Sico MA, Bonomo MG, D鈥橝damo A, Bochicchio S, Salzano G (2009) Fingerprinting analysis of / Oenococcus oeni strains under stress conditions. FEMS Microbiol Lett 296:11鈥?7 CrossRef
    34. Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond / Bacillus subtilis. Crit Rev Microbiol 32:77鈥?6 CrossRef
    35. Taranto MP, Fernandez ML, Lorca G, de Valdez GF (2003) Bile salts and cholesterol induce changes in the lipid cell membrane of / Lactobacillus reuteri. J Appl Microbiol 95:86鈥?1 CrossRef
    36. Teixeira H, Goncalves MG, Rozes N, Ramos A, San Romao MV (2002) Lactobacillic acid accumulation in the plasma membrane of / Oenococcus oeni: a response to ethanol stress? Microb Ecol 43:146鈥?53 CrossRef
    37. Terrade N, No毛l R, Couillaud R, de Ordu帽a RM (2009) A new chemically defined medium for wine lactic acid bacteria. Food Res Int 42:363鈥?67 CrossRef
    38. Tymczyszyn EE, Gomez-Zavaglia A, Disalvo EA (2005) Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of / Lactobacillus bulgaricus. Arch Biochem Biophys 443:66鈥?3 CrossRef
    39. van de Guchte M, Serror P, Chervaus C, Smokvina T, Ehrlich ST, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187鈥?16 CrossRef
    40. Versari A, Parpinello GP, Cattaneo M (1999) / Leuconostoc oenos and malolactic fermentation in wine: A review. J Ind Microbiol Biotechnol 23:447鈥?55 CrossRef
    41. Wang Y, Corrieu G, Beal C (2005) Fermentation pH and temperature influence the cryotolerance of / Lactobacillus acidophilus RD758. J Dairy Sci 88:21鈥?9 CrossRef
    42. Zhao G, Zhang G (2009) Influences of protectants, rehydration media and storage on the viability of freeze-dried / Oenococcus oeni for malolactic fermentation. World J Microbiol Biotechnol 25:1801鈥?806 CrossRef
  • 作者单位:Guoqiang Zhang (1) (2)
    Mingtao Fan (1)
    Qian Lv (1)
    Yahui Li (1)
    Yanlin Liu (1)
    Shuangfeng Zhang (1)
    Hua Zhang (1)

    1. College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
    2. Tibet Agriculture and Animal Husbandary College, Linzhi, 860000, China
  • ISSN:1869-2044
文摘
The effects of stress shocks on the freeze-drying viability, malolactic activity and membrane fatty acid composition of the Oenococcus oeni SD-2a cells were studied. O. oeni SD-2a cells after 2 h of stress exposure exhibited better freeze-drying viability and malolactic fermentation ability. A decrease in unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in C19cyc11 relative concentration were observed in all stress shocked cells. There was a significant negative correlation between C19cyc11 and C18:lcis11, C16:0 in all stress shocks. The freeze-drying viability exhibited a significant positive correlation with the levels of C19cyc11 in cold and acid shocks. The only significant positive correlation between the ability of O. oeni SD-2a to conduct malic acid degradation and membrane composition existed with C14:0 in ethanol shocks. In general, freeze-drying viabilities were maximum for cells with low UFA/SFA ratio and high CFA levels, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting stress shocked cells from lyophilization. However, changes observed in membrane fatty acid composition are not enough to explain the greater freeze-drying viability of cells shocked at 8% ethanol. Thus, other mechanisms could be responsible for this increase in the bacterial resistance to lyophilization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700