Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface
详细信息    查看全文
  • 作者:Yunfeng Xie ; Yulong Jin ; Yanyan Huang ; Guoquan Liu ; Rui Zhao
  • 关键词:Quartz crystal microbalance ; Gold nanoparticles ; Signal amplification ; Pb2+
  • 刊名:Microchimica Acta
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:181
  • 期:13-14
  • 页码:1521-1527
  • 全文大小:582 KB
  • 参考文献:1. He QW, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128:9316-317 CrossRef
    2. Chen YY, Chang HT, Shiang YC, Hung YL, Chiang CK, Huang CC (2009) Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem 81:9433-439 CrossRef
    3. Chang IH, Tulock JJ, Liu JW, Kim WS, Cannon DM, Lu Y, Bohn PW, Sweedler JV, Cropek DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a manocapillary interconnected microfluidic device. Environ Sci Technol 39:3756-761 CrossRef
    4. Burlingame AL, Boyd RK, Gaskell SJ (1996) Mass spectrometry. Anal Chem 68:R599–R651 CrossRef
    5. Faraji M, Yamini Y, Shariati S (2009) Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. J Hazard Mater 166:1383-388 CrossRef
    6. Swami K, Judd CD, Orsini J (2009) Trace metals analysis of legal and counterfeit cigarette tobacco samples using inductively coupled plasma mass spectrometry and cold vapor atomic absorption spectrometry. Spectrosc Lett 42:479-90 CrossRef
    7. Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 32:1648-655 CrossRef
    8. Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: Improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25:984-89 CrossRef
    9. Liu XJ, Zhang N, Zhou J, Chang TJ, Fang CL, Shangguan DH (2013) A turn-on fluorescent sensor for zinc and cadmium ion based on perylene tetracarboxylic diimide. Analyst 138:901-06 CrossRef
    10. Chen CT, Huang WP (2002) A highly selective fluorescent chemosensor for lead ions. J Am Chem Soc 124:6246-247 CrossRef
    11. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He CA (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem 44:2715-719 CrossRef
    12. Li T, Dong SJ, Wang EK (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132:13156-3157 CrossRef
    13. Kim IB, Dunkhorst A, Gilbert J, Bunz UHF (2005) Sensing of lead ions by a carboxylate-substituted PPE: multivalency effects. Macromolecules 38:4560-562 CrossRef
    14. Pan DW, Wang YE, Chen ZP, Lou TT, Qin W (2009) Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. Anal Chem 81:5088-094 CrossRef
    15. Tretjakov A, Syritski V, Reut J, Boroznjak R, Volobujeva O, Opik A (2013) Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta 180:1433-442 CrossRef
    16. He XH, Chen L, Xie X, Su ZH, Qin C, Liu Y, Ma M, Yao SZ, Deng L, Xie QJ, Tian Y, Qin DL, Luo YP (2012) Square wave anodic stripping voltammetric determination of lead(II) using a glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes. Microchim Acta 176:81-9 CrossRef
    17. Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206-22 CrossRef
    18. Wang J, Zhu Z, Ma H (2013) Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal Chem 85:2096-101 CrossRef
    19. Wang DZ, Tang W, Wu XJ, Wang XY, Chen GJ, Chen Q, Li N, Liu F (2012) Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. Anal Chem 84:7008-014 CrossRef
    20. Xie Y, Huang Y, Wang W, Liu G, Zhao R (2011) Dynamic interaction between melamine and cyanuric acid in artificial urine investigated by quartz crystal microbalance. Analyst 136:2482-488 CrossRef
    21. Sharma H, Mutharasan R (2013) HlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Anal Chem 85:3222-228 CrossRef
    22. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csoregi E (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18:547-53 CrossRef
    23. Sartore L, Barbaglio M, Penco M, Bergese P, Bontempi E, Colombi P, Depero LE (2009) Polymer-coated quartz crystal microbalance chemical sensor for heavy cations in water. J Nanosci Nanotechnol 9:1164-168 CrossRef
    24. Huang GS, Wang MT, Su CW, Chen YS, Hong MY (2007) Picogram detection of metal ions by melanin-sensitized piezoelectric sensor. Biosens Bioelectron 23:319-25 CrossRef
    25. Huang H, Chen S, Liu F, Zhao Q, Liao B, Yi S, Zeng Y (2013) Multiplex plasmonic sensor for detection of different metal ions based on a single type of gold nanorod. Anal Chem 85:2312-319 CrossRef
    26. Fu XL, Lou TT, Chen ZP, Lin M, Feng WW, Chen LX (2012) “Turn-on-fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. ACS Appl Mater Interfaces 4:1080-086 CrossRef
    27. Aylmore MG, Muir DM (2001) Thiosulfate leaching of gold—a review. Miner Eng 14:135-74 CrossRef
    28. Feng D, van Deventer JSJ (2002) The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system. Hydrometallurgy 64:231-46 CrossRef
    29. Zhang QD, Huang YY, Zhao R, Liu GQ, Chen Y (2008) Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosens Bioelectron 24:48-4 CrossRef
    30. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20-2
    31. Bryce RA, Charnock JM, Pattrick RAD, Lennie AR (2003) EXAFS and density functional study of gold(I) thiosulfate complex in aqueous solution. J Phys Chem A 107:2516-523 CrossRef
    32. Schaaff TG, Whetten RL (2000) Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions. J Phys Chem B 104:2630-641 CrossRef
    33. Hung YL, Hsiung TM, Chen YY, Huang YF, Huang CC (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114:16329-6334 CrossRef
    34. Deschenes G, Lastra R, Brown JR, Jin S, May O, Ghali E (2000) Effect of lead nitrate on cyanidation of gold ores: progress on the study of the mechanisms. J Miner Eng 13:1263-279 CrossRef
    35. Senanayake G (2008) A review of effects of silver, lead, sulfide and carbonaceous matter on gold cyanidation and mechanistic interpretation. Hydrometallurgy 90:46-3 CrossRef
    36. Cox MT, Hill LMR, Gahan LR (1999) Detection of lead(II) and silver(I) in aqueous solution using a piezoelectric device. Analyst 124:859-63 CrossRef
    37. Casilli S, Malitesta C, Conoci S, Petralia S, Sortino S, Valli L (2004) Piezoelectric sensor functionalised by a self-assembled bipyridinium derivative: characterisation and preliminary applications in the detection of heavy metal ions. Biosens Bioelectron 20:1190-195 CrossRef
    38. Chen Z, Zhang N, Zhuo L, Tang B (2009) Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions. Microchim Acta 164:311-36 CrossRef
    39. Lou TT, Chen LX, Chen ZP (2011) Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl Mater Interfaces 3:4215-220 CrossRef
    40. Lou XD, Zhang Y, Qin JG (2011) A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Chem Eur J 17:9691-696 CrossRef
  • 作者单位:Yunfeng Xie (1)
    Yulong Jin (1)
    Yanyan Huang (1)
    Guoquan Liu (1)
    Rui Zhao (1)

    1. Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1436-5073
文摘
A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb2+ by exploiting the catalytic effect of Pb2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb2+ (30?nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb2+ in real samples. Figure ?/em>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700