Re-Os isotopic constraint to the age of in komatiites in the Neoarchean Guyang greenstone belt, North China Craton
详细信息    查看全文
  • 作者:XuDong Ma (1)
    JingHui Guo (1)
    Liang Chen (2)
    ZhuYin Chu (1)
  • 关键词:komatiite ; Re ; Os isotope ; Guyang greenstone belt ; Archean ; North China Craton
  • 刊名:Chinese Science Bulletin
  • 出版年:2010
  • 出版时间:September 2010
  • 年:2010
  • 卷:55
  • 期:27-28
  • 页码:3197-3204
  • 全文大小:606KB
  • 参考文献:1. Wilde S A, Cawood P A, Wang K Y, et al. SHRIMP U-Pb zircon dating of granites and gneisses in the taihangshan-wutaishan area: Implications for the timing of crustal growth in the North China Craton. Chinese Sci Bull, 1998, 43: 144 CrossRef
    2. Wang Z, Wilder S, Wang K, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Res, 2004, 131: 323-43 CrossRef
    3. Wang Z. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Res, 2009, 170: 73-7 CrossRef
    4. Zhai M G, Yang R Y, Lu W J. Major and trace element geochemistry of the Archean Qingyuan granite-greenston terrane (in Chinese). Geol Rev, 1984, 30: 523-33
    5. Li J J, Shen B F, Li S B. Geology and geochemistry of Archen granite-greenstone belts in Northern Liaoning province and Southern Jilin Province (in Chinese). Geochimica, 1995, 25: 458-67
    6. Mao D B, Sheng B F, Li J J. Archean geological evolution and metallogeny in Qingyuan area, Northern Liaoning Province, China (in Chinese). Prog Precambrian Res, 1997, 20: 3-1
    7. Wan Y S, Song B, Yang C. Ziron SHRMP U-Pb geochronology of Archean rocks from the Fushun-Qingyuan area, Liaoning Province and geological significance (in Chinese). Acta Geol Sin, 2005, 79: 78-7
    8. Xu H F, Dong Y J, Shi Y H. Granite-Greenstone Belt in Western Shandong Province (in Chinese). Beijing: Geological Publishing House, 1992
    9. Polat A, Li J, Fryer B. Geochemical characteristics of the Neoarchean (2800-2700 Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. Chem Geol, 2006, 230: 60-7 CrossRef
    10. Archean geological characteristics and Ore of Dongwufenzi-Zhulagou in Central Inner Mongolia. Geology and Mineral Survey of Inner Mongolia Report, 1986. 1-5
    11. Chen L. Geochemistry and geochronology of Guyang greenstone belt. Postdoctor’s Report, 2007
    12. Arndt N. Komatiites, kimberlites, and boninites. J Geophys Res, 2003, 108: 2293-304 CrossRef
    13. Herzberg C. Depth and degree of melting of komatiite. J Geophys Res, 1992, 97: 4521-540 CrossRef
    14. Asahara Y, Ohtani E. Melting relations of the hydrous primitive mantle in the CMAS-H2O system at high pressures and temperatures, and implications for generation of komatiites. Phys Earth Planet Inter, 2001, 125: 31-4 CrossRef
    15. Parman S, Shimizu N, Grove T, et al. Constraints on the pre metamorphic trace elemen composition of Barberton komatiites from ion probe analyses of preserved clinopyroxen. Contrib Mineral Petrol, 2003, 144: 383-96 CrossRef
    16. Wilson A H, Shirey S B, Carlson R W. Archaean ultra-depleted komatiites formed by hydrou melting of cratonic mantle. Nature, 2003, 423: 858-61 CrossRef
    17. Parman S, Grove T, Dann J. A subduction origin for komatiites and craton lithospheric mantle. South Afr J Earth Sci, 2004, 107: 107-18
    18. Zhao G C, Wilde S A. U-Pb zircon age constraints on the Dongwanzi ultramafic-mafic body, North China, confirm it is not an Archean ophiolite. Earth Planet Sci Lett, 2007, 255: 85-3 CrossRef
    19. Zhang S H, Zhao Y, Song B. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China Craton: Geochronology, petrogenesis, and tectonic implications. Geol Soc Am Bull, 2009, 121: 181-00
    20. Zhi X C, Qin X. Re-Os isotope geochemistry of mantle-derived peridotite xenoliths from eastern China: Constraints on the age and thinning of lithosphere mantle (in Chinese). Acta Petrol Sin, 2004, 20: 989-98
    21. Luck J M, Arndt N T. Re/Os isochron from Archean komatiite from Alexo, Ontario. Terr Cogn, 1986, 5: 323
    22. Puchtel I S, Humayun M, Campbell A J. Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochim Cosmochim Acta, 2004, 68: 1361-383 CrossRef
    23. Walker R J, Echeverria L M, Shirey S B. Re-Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os-isotopic evidence for ancient heterogeneities in the mantle. Contrib Mineral Petrol, 1991, 107: 150-62 CrossRef
    24. Walker R J, Storey M, Kerr A C, et al. Implications of 187Os isotopic heterogeneities in a mantle plume: Evidence from Gorgona Island and Curacao. Geochim Cosmochim Acta, 1999, 63: 713-28 CrossRef
    25. Puchtel I S, Brugmann G E, Hofmann A W. Os-isotope systematics of komatiitic basalts from the Vetreny belt, Baltic Shield:evidence for a chondritic source of the 2.45 Ga plume. Contrib Mineral Petrol, 2001, 140: 588-99 CrossRef
    26. Puchtel I S, Humayun M. Highly siderophile element geochemistry of 187Os-enriched 2.8-Ga Kostomuksha komatiites, Baltic Shield. Geochim Cosmochim Acta, 2005, 69: 1607-618 CrossRef
    27. Zhao G C, Wilde S A, Cawood P A. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Geol Rev, 1998, 40: 706-21 CrossRef
    28. Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geol Mag, 2001, 138: 87-1 CrossRef
    29. Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res, 2005, 136: 177-02 CrossRef
    30. Li S X, Liu X S, Zhang L Q. Granite-greenstone belt in Sheerteng area, Inner Mongolia, China (in Chinese). J Changchun Univ Geol, 1987, 17: 81-02
    31. Jin W, Li S X, Liu X S. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics (in Chinese). Acta Petrol Sin, 1991, 4: 27-5
    32. Chu Z Y, Chen F K, Wang W. High-precision measurement for the concentration and isotopic composition of Rhenium and Osmium in micro-amount of geological samples (in Chinese). Rock Mineral Anal, 2007, 26: 431-35
    33. Chu Z Y, Wu F Y, Walker R J. Temporal evolution of the litho spheric mantle beneath the Eastern North China Craton. J Petrol, 2009, 50: 1857-898 CrossRef
    34. Palme H, O’Neill. Comsmochemical estimates of mantle composition. In: Carlson R W, ed. Treatise on Geochemistry (2): The Mantle and Core. Amsterdam: Elsevier, 2004. 1-8
    35. Meisel T, Walker R J, Morgau J M. The Osmium isotopic composition of primitive upper mantle. Nature, 1996, 383: 517-20 CrossRef
    36. Bennett V C, Nutman A P, Esat T M. Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern west Greenland (3.8 Ca) and Western Australia (3.46 Ga). Geochim Cosmochim Acta, 2002, 66: 2615-630 CrossRef
    37. Snow J E, Reisberg L. Os isotopic systematics of the MORB mantle: Results from altered abyssal peridotites. Earth Planet Sci Lett, 1995, 133: 411-21 CrossRef
    38. Walker R J, Nisbet E. 187Os isotopic constraints on Archean mantle dynamics. Geochim Cosmochim Acta, 2002, 66: 3317-325 CrossRef
    39. Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta, 1989, 53: 1583-595 CrossRef
    40. Pearson D G, Carlsona R W, Shirey S B. Stabilisation of Archaean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett, 1995, 134: 341-57 CrossRef
    41. Xia Q X, Zhi X C, Meng Q. The trace element and Re-Os isotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba: Nature and age of SCLM beneath the area (in Chinese). Acta Petrol Sin, 2004, 20: 1215-224
    42. Zhang W J, Li L. Petrology and dating of Neo-Archean intrusive rocks from Guyang area, Inner Mongolia (in Chinese). J Chin Univ Geosci, 2000, 25: 221-26
    43. Jian P, Zhang Q, Liu D Y, et al. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia (in Chinese). Acta Petrol Sin, 2005, 21: 151-57
  • 作者单位:XuDong Ma (1)
    JingHui Guo (1)
    Liang Chen (2)
    ZhuYin Chu (1)

    1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
    2. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, 710069, China
  • ISSN:1861-9541
文摘
The 2.5 Ga Guyang greenstone belt is a major lithological unit in the northwestern part of the North China Craton. Komatiites have recently been identified to occur within the lower part of the meta-volcanic sedimentary sequence of the greenstone belt. The biggest komatiite near Guyang has been mapped out, which is 500 m long and 50 m wide lenticular block. Re-Os isotopic compositions of 9 samples were analyzed to date the komatiites. The Os contents are from 0.88 to 2.63 ppb, identical with typical komatiites, and slightly lower than the normal mantle. The 187Os/188Os ratios are from 0.1115 to 0.1197, which are lower enough to exclude the origin of Phanerozoic magma as widely developed in adjacent areas. The calculated Re depletion model ages (T RD) are from 1346 to 2454 Ma, among them the oldest age of 2454 Ma gives the minimum evaluation for the formation age of the Guyang komatiite. Therefore, the komatiites are a part of the Guyang greenstone belt, indicating high degree melting of mantle during ?.5 Ga crustal growth event.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700