Sickle haemoglobin, haemoglobin C and malaria mortality feedbacks
详细信息    查看全文
  • 作者:Bronner P. Gonçalves ; Sunetra Gupta ; Bridget S. Penman
  • 关键词:Malaria ; Plasmodium falciparum ; Sickle cell ; Haemoglobin C ; Haemoglobinopathies ; Human evolution ; Gametocytes ; Transmission ; Sickle haemoglobin
  • 刊名:Malaria Journal
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 全文大小:1,700 KB
  • 参考文献:1.Williams TN. Human red blood cell polymorphisms and malaria. Curr Opin Microbiol. 2006;9:388–94.PubMed CrossRef
    2.Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.PubMed PubMedCentral CrossRef
    3.Modiano D, Luoni G, Sirima BS, Simpore J, Verra F, Konate A, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414(6861):305–8.PubMed CrossRef
    4.Lopera-Mesa TM, Doumbia S, Konate D, Anderson JM, Doumbouya M, Keita AS, et al. Impact of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol. 2015;2:e140–9.CrossRef
    5.Fairhurst RM, Fujioka H, Hayton K, Collins KF, Wellems TE. Aberrant development of Plasmodium falciparum in hemoglobin CC red cells: implications for the malaria protective effect of the homozygous state. Blood. 2003;101:3309–15.PubMed CrossRef
    6.Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, Hoang HL, et al. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005;435:1117–21.PubMed CrossRef
    7.Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard T, Osier FH, et al. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS One. 2007;2:e978.PubMed PubMedCentral CrossRef
    8.Mangano VD, Kabore Y, Bougouma EC, Verra F, Sepulveda N, Bisseye C, et al. Novel insights into the protective role of Hemoglobin S and C against Plasmodium falciparum parasitemia. J Infect Dis. 2015;212:626–34.PubMed PubMedCentral CrossRef
    9.Billo MA, Johnson ES, Doumbia SO, Poudiougou B, Sagara I, Diawara SI, et al. Sickle cell trait protects against Plasmodium falciparum infection. Am J Epidemiol. 2012;176:S175–85.PubMed PubMedCentral CrossRef
    10.Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakite SA, Arie T, et al. Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci USA. 2008;105:991–6.PubMed PubMedCentral CrossRef
    11.Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, et al. An immune basis for malaria protection by the sickle cell trait. PLoS Med. 2005;2:e128.PubMed PubMedCentral CrossRef
    12.Pasvol G, Weatherall DJ, Wilson RJ. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature. 1978;274:701–3.PubMed CrossRef
    13.Shear HL, Roth EF Jr, Fabry ME, Costantini FD, Pachnis A, Hood A, et al. Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood. 1993;81:222–6.PubMed
    14.LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.PubMed PubMedCentral CrossRef
    15.Duflo B, Maiga I, Pichard E, Diallo D, Diallo AN, Coulibaly T, et al. [Hemoglobin C in a hospital milieu in Bamako (Mali)](in French). Bull Soc Pathol Exot. 1985;78:393–400.
    16.Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, et al. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep. 2013;3:1671.PubMed PubMedCentral CrossRef
    17.Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun. 2010;1:104.PubMed PubMedCentral CrossRef
    18.May J, Evans JA, Timmann C, Ehmen C, Busch W, Thye T, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.PubMed CrossRef
    19.Nagel RL, Fabry ME, Steinberg MH. The paradox of hemoglobin SC disease. Blood Rev. 2003;17:167–78.PubMed CrossRef
    20.Modiano D, Bancone G, Ciminelli BM, Pompei F, Blot I, Simpore J, et al. Haemoglobin S and haemoglobin C: ‘quick but costly’ versus ‘slow but gratis’ genetic adaptations to Plasmodium falciparum malaria. Hum Mol Genet. 2008;17:789–99.PubMed CrossRef
    21.Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006;22:424–30.PubMed CrossRef
    22.Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J. 2004;3:24.PubMed PubMedCentral CrossRef
    23.Gouagna LC, Bancone G, Yao F, Yameogo B, Dabire KR, Costantini C, et al. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31.PubMed CrossRef
    24.Ringelhann B, Hathorn MK, Jilly P, Grant F, Parniczky G. A new look at the protection of hemoglobin AS and AC genotypes against Plasmodium falciparum infection: a census tract approach. Am J Hum Genet. 1976;28:270–9.PubMed PubMedCentral
    25.Robert V, Tchuinkam T, Mulder B, Bodo JM, Verhave JP, Carnevale P, et al. Effect of the sickle cell trait status of gametocyte carriers of Plasmodium falciparum on infectivity to anophelines. Am J Trop Med Hyg. 1996;54:111–3.PubMed
    26.Feng Z, Smith DL, McKenzie FE, Levin SA. Coupling ecology and evolution: malaria and the S-gene across time scales. Math Biosci. 2004;189:1–19.PubMed CrossRef
    27.Cavalli-Sforza LL, Bodmer WF. The genetics of human populations. San Francisco: WH Freeman; 1971.
    28.Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet. 1997;349:1650–4.PubMed CrossRef
    29.Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000;156:297–304.PubMed PubMedCentral
    30.Baker DA. Malaria gametocytogenesis. Mol Biochem Parasitol. 2010;172:57–65.PubMed PubMedCentral CrossRef
    31.Lawaly YR, Sakuntabhai A, Marrama L, Konate L, Phimpraphi W, Sokhna C, et al. Heritability of the human infectious reservoir of malaria parasites. PLoS One. 2010;5:e11358.PubMed PubMedCentral CrossRef
    32.Paul RE, Brey PT. Malaria parasites and red blood cells: from anaemia to transmission. Mol Cells. 2003;15:139–49.PubMed
    33.Reece SE, Duncan AB, West SA, Read AF. Host cell preference and variable transmission strategies in malaria parasites. Proc Biol Sci. 2005;272:511–7.PubMed PubMedCentral CrossRef
    34.Reece SE, Ramiro RS, Nussey DH. Plastic parasites: sophisticated strategies for survival and reproduction? Evol Appl. 2009;2:11–23.PubMed PubMedCentral CrossRef
    35.Trager W, Gill GS, Lawrence C, Nagel RL. Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood. Exp Parasitol. 1999;91:115–8.PubMed CrossRef
    36.Mackinnon MJ, Read AF. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution. 1999;53:689–703.CrossRef
    37.Gupta S, Hill AV. Dynamic interactions in malaria: host heterogeneity meets parasite polymorphism. Proc Biol Sci. 1995;261:271–7.PubMed CrossRef
  • 作者单位:Bronner P. Gonçalves (1)
    Sunetra Gupta (2)
    Bridget S. Penman (2)

    1. Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, W1CE 7HT, UK
    2. Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine;
  • 出版者:BioMed Central
  • ISSN:1475-2875
文摘
Background Sickle haemoglobin (HbS) and haemoglobin C (HbC) are both caused by point mutations in the beta globin gene, and both offer substantial malaria protection. Despite the fact that the blood disorder caused by homozygosity for HbC is much less severe than that caused by homozygosity for HbS (sickle cell anaemia), it is the sickle mutation which has come to dominate many old-world malarious regions, whilst HbC is highly restricted in its geographical distribution. It has been suggested that this discrepancy may be due to sickle cell heterozygotes enjoying a higher level of malaria protection than heterozygotes for HbC. A higher fitness of sickle cell heterozygotes relative to HbC heterozygotes could certainly have allowed the sickle cell allele to spread more rapidly. However, observations that carrying either HbC or HbS enhances an individual’s capacity to transmit malaria parasites to mosquitoes could also shed light on this conundrum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700