Determination of aerodynamic parameters of urban surfaces: methods and results revisited
详细信息    查看全文
  • 作者:A. F. Mohammad ; S. A. Zaki ; A. Hagishima
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:122
  • 期:3-4
  • 页码:635-649
  • 全文大小:784 KB
  • 参考文献:Abd Razak A, Hagishima A, Ikegaya N, Tanimoto J (2012) Analysis of airflow over building arrays for assessment of urban wind environment. Build Environ 59:56-5. doi:10.-016/?j.?buildenv.-012.-8.-07 CrossRef
    Akins RE, Peterka JA, Cermak JE (1977) Mean force and moment coefficients for buildings in turbulent boundary layers. J Wind Eng Ind Aerodyn 2:195-09CrossRef
    Bao JW, Michelson SA, Wilczak JM (2002) Sensitivity of numerical simulations of parameterizations of roughness for surface heat fluxes at high winds over the sea. AMS Mon Weather Rev 130
    Boppana VBI, Xie ZT, Castro IP (2010) Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Boundary-Layer Meteorol 135:433-54. doi:10.-007/?s10546-010-9489-9 CrossRef
    Bottema M (1995) Parameterization of aerodynamic roughness parameters in relation with air pollutant removal efficiency of streets. Environ Trans Ecol 6:2-
    Bottema M (1996) Roughness parameters over regular rough surfaces: experimental requirements and model validation. J Wind Eng Ind Aerodyn 64:249-65CrossRef
    Cao M, Lin Z (2014) Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J App Math Article ID: 267683
    Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229-59CrossRef
    Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95:715-40. doi:10.-016/?j.?jweia.-007.-1.-04 CrossRef
    Claus J, Coceal O, Thomas TG, Branford S, Belcher SE, Castro IP (2012) Wind-direction effects on urban-type flows. Boundary-Layer Meteorol 142:265-87. doi:10.-007/?s10546-011-9667-4 CrossRef
    Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 4:1-1CrossRef
    Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491-19. doi:10.-007/?s10546-006-9076-2 CrossRef
    Coceal O, Goulart EV, Branford S, Thomas TG, Belcher SE (2014) Flow structure and near-field dispersion in arrays of building-like obstacles. J Wind Eng Ind Aerodyn 125:52-8CrossRef
    Coles DE (1956) The law of the wake in the turbulent boundary layers. J Fluid Mech 1:191-26CrossRef
    Counihan J (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements. Atmos Environ 5:637-42CrossRef
    Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127:131-51. doi:10.-007/?s10546-007-9250-1 CrossRef
    ESDU (1980) Mean fluid forces and moments on rectangular prisms: surface-mounted structures in turbulent shear flow. Engineering Sciences Data Item Number 80003
    Farell C, Iyengar AKS (1999) Experiments on the wind tunnel simulation of atmospheric boundary layers. J Wind Eng Ind Aerodyn 79:11-5. doi:10.-016/?S0167-6105(98)00117-2 CrossRef
    Garrat JR (1992) The atmospheric boundary layer. Cambridge University Press, Melbourne
    Hagishima A, Tanimoto J, Nagayama K (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132:315-37. doi:10.-007/?s10546-009-9403-5 CrossRef
    Hama FR (1954) Boundary layer characteristics for smooth and rough surfaces. Trans Soc Nav Archit Mar Eng 62:333-58
    Huq P, Franzese P (2012) Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Boundary-Layer Meteorol 147:103-21. doi:10.-007/?s10546-012-9780-z CrossRef
    Iyengar AKS, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. J Wind Eng Ind Aerodyn 89:1059-080CrossRef
    Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15-5CrossRef
    Jiang D, Jiang W, Liu H, Sun J (2008) Systematic influence of different building spacing, height, and layout on mean wind and turbulent characteristics within and over building arrays. Wind Struct 11:275-89CrossRef
    Jiang X, Lai C (2009) Numerical techniques for direct and large-eddy simulations. CRC Press, Boca RatonCrossRef
    Kanda M, Moriwaki RYO, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112:343-68CrossRef
    Kanda M, Moriizumi T (2009) Momentum and heat transfer over urban-like surfaces. Boundary-Layer Meteorol 131:385-01CrossRef
    Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parameterization for real urban surfaces. Boundary-Layer Meteorol 148:357-77. doi:10.-007/?s10546-013-9818-x CrossRef
    Kutzbach J (1961) Investigations
  • 作者单位:A. F. Mohammad (1)
    S. A. Zaki (1)
    A. Hagishima (2)
    M. S. M. Ali (1)

    1. Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, 54100, Kuala Lumpur, Malaysia
    2. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Climate Change
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Wien
  • ISSN:1434-4483
文摘
Estimates of aerodynamic parameters, in particular roughness length z 0 and displacement height d, are important for the analysis of the roughness of an urban surface, which affects processes that occur within the urban boundary layer such as pollutant dispersion and urban ventilation. Findings regarding the aerodynamic effects of various configurations of urban arrays were compiled from various studies. Several experimental, numerical and semi-empirical studies to estimate z 0 and d were reviewed and compared with each other. The results can be summarized as follows: (1) the influence of the frontal area index (λ f ) on z 0 is significant and their relationship has been confirmed by both experimental and numerical data; (2) compared to one-parameter and two-parameter fitting methods, the three-parameter fitting method is the least accurate; (3) the physical meaning of d remains vague because its definition as the height where surface drag acts may not be accurate for sharp-edged roughness blocks and (4) the peak values of z 0 for uniform and heterogeneous block heights indicate presence of skimming or wake-interference flow effects, which may influence surface roughness. Finally, the semi-empirical models were found to be limited to cases derived from available experimental data, which normally involve uniform arrays of cubes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700