Construction of layer-by-layer assembled chitosan/titanate nanotubes based nanocoating on cotton fabrics: flame retardant performance and combustion behavior
详细信息    查看全文
  • 作者:Haifeng Pan ; Wei Wang ; Ying Pan ; Wenru Zeng ; Jing Zhan ; Lei Song ; Yuan Hu…
  • 关键词:Titanate nanotubes ; Flame retardancy ; Protective effect ; Network structure
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:22
  • 期:1
  • 页码:911-923
  • 全文大小:12,323 KB
  • 参考文献:1. Alongi J, Camino G, Malucelli G (2013) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohyd Polym 92(2):1327-334. doi:10.1016/j.carbpol.2012.10.029 CrossRef
    2. Bavykin DV, Milsom EV, Marken F, Kim DH, Marsha DH, Riley FC, Walsh DJ, El-Abiary KH, Lapkin AA (2006) The oxidation of borohydride ion at titanate nanotube supported gold electrodes. Electrochem Commun 7(10):1055-660. doi:10.1016/j.elecom.2006.07.031
    3. Bras ML, Bourbigot S, Tallecand YL, Laureyns J (1997) Synergy in intumescence—application to beta-cyclodextrin carbonisation agent intumescent additives for fire retardant polyethylene formulations. Polym Degrad Stab 56(1):11-1. doi:10.1016/S0141-3910(96)00190-5 CrossRef
    4. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745-50. doi:10.1016/j.polymdegradstab.2011.02.019 CrossRef
    5. Chen Q, Du GH, Che RC, Yan ZY, Peng M (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79(22):3702-704. doi:10.1063/1.1423403 CrossRef
    6. Chen Q, Du GH, Zhang S, Peng LM (2002) The structure of trititanate nanotubes. Acta Crystallogr B 58(4):587-93. doi:10.1107/S0108768102009084 CrossRef
    7. Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH (2012) The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). J Hazard Mater 209:34-9. doi:10.1016/j.jhazmat.2011.12.048 CrossRef
    8. Gaan S, Rupper P, Salimova V, Heubergera M, Rabeb S, Vogelb F (2009) Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: effect of alkyl substituent on nitrogen atom. Polym Degrad Stab 94(7):1125-134. doi:10.1016/j.polymdegradstab.2009.03.017 CrossRef
    9. Grandcolas M, Louvet A, Keller N, Keller V (2009) Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. Angew Chem 121(1):167-70. doi:10.1002/ange.200802932 CrossRef
    10. Grandcolas M, Sinault L, Mosset F, Louvet A, Keller N, Keller V (2011) Self-decontaminating layer-by-layer functionalized textiles based on WO3-modified titanate nanotubes: application to the solar photocatalytic removal of chemical warfare agents. Appl Catal A: Gen 391(1-):455-67. doi:10.1016/j.apcata.2010.05.028 CrossRef
    11. Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928-33. doi:10.1038/nmat1502 CrossRef
    12. Laufer G, Carosio F, Martinez R, Camino G, Grunlan JC (2011) Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies. J Colldid Interface Sci 356(1):69-7. doi:10.1016/j.jcis.2010.12.072 CrossRef
    13. Lee JS, Cho J, Lee C, Kim I, Park J, Kim YM, Shin H, Lee J, Caruso F (2007) Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat Nanotechnol 2(12):790-95. doi:Haifeng Pan (1) (2)
    Wei Wang (1)
    Ying Pan (1)
    Wenru Zeng (1)
    Jing Zhan (1)
    Lei Song (1)
    Yuan Hu (1) (2)
    Kim Meow Liew (2) (3)

    1. State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, People’s Republic of China
    2. Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, 166 Ren’ai Road, Suzhou, 215123, Jiangsu, People’s Republic of China
    3. Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
A flame retardant nanocoating made from chitosan and titanate nanotubes was deposited on the surface of cotton fabric by the layer by layer assembly to improve its flame retardancy. Firstly, the hydrothermal method was used to prepare titanate nanotubes. Then, coated cotton fabrics were prepared by alternately submersing cotton fabrics into chitosan solution and titanate nanotube suspension. The structure of nanocoating on cotton fabric surface was tailored by altering number of bilayers and the concentration of titanate nanotube suspension. X-ray photoelectron spectroscopy confirmed that titanate nanotube filled nanocoating was successfully deposited on the surface of cotton fabric. Furthermore, the titanate nanotubes assembled a randomly oriented and entangled network structure, as can be observed by scanning electron microscopy. The thermogravimetric analysis result indicated that the thermal and thermal-oxidation stability of all coated cotton fabrics were both improved in the high temperature range from 330 to 700?°C. The microscale combustion calorimeter result showed that all coated cotton fabrics have the reduction in peak heat release rate and total heat release compared with that of pristine cotton fabric. Moreover, the reduction was dependent on the concentration of titanate nanotube suspension and number of bilayers. The improved flame retardancy can be ascribed to the protective effect of the titanate nanotube network structure formed, which acts as a physical barrier to retard the heat, oxygen and mass transfers between the flame and underlying material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700