The role of autophagy induced by tumor microenvironment in different cells and stages of cancer
详细信息    查看全文
  • 作者:Xue Yang (1)
    Dan-Dan Yu (1)
    Fei Yan (1)
    Ying-Ying Jing (1)
    Zhi-Peng Han (1)
    Kai Sun (2)
    Lei Liang (1)
    Jing Hou (3)
    Li-Xin Wei (1)

    1. Tumor Immunology and Gene Therapy Center
    ; Eastern Hepatobiliary Surgery Hospital ; The Second Military Medical University ; 225 Changhai Road ; 200438 ; Shanghai ; China
    2. Central laboratory
    ; Ren Ji Hospital ; School of Medicine ; Shanghai JiaoTong University ; Shanghai ; China
    3. Department of Pharmacy
    ; Chang Hai Hospital ; The Second Military Medical University ; Shanghai ; China
  • 关键词:Autophagy ; Tumor microenvironment ; Tumorigenesis
  • 刊名:Cell & Bioscience
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:5
  • 期:1
  • 全文大小:1,347 KB
  • 参考文献:1. Hall, B, Dembinski, J, Sasser, AK, Studeny, M, Andreeff, M, Marini, F (2007) Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 86: pp. 8-16
    2. Degenhardt, K, Mathew, R, Beaudoin, B, Bray, K, Anderson, D, Chen, G (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: pp. 51-64
    3. Mathew, R, Kongara, S, Beaudoin, B, Karp, CM, Bray, K, Degenhardt, K (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: pp. 1367-1381
    4. Wojtkowiak, JW, Rothberg, JM, Kumar, V, Schramm, KJ, Haller, E, Proemsey, JB (2012) Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72: pp. 3938-3947
    5. Amaravadi, RK, Lippincott-Schwartz, J, Yin, XM, Weiss, WA, Takebe, N, Timmer, W (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17: pp. 654-666
    6. Chen, N, Karantza, V (2011) Autophagy as a therapeutic target in cancer. Cancer Biol Ther 11: pp. 157-168
    7. Liu, EY, Ryan, KM (2012) Autophagy and cancer鈥搃ssues we need to digest. J Cell Sci 125: pp. 2349-2358
    8. White, E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12: pp. 401-410
    9. Hoyer-Hansen, M, Jaattela, M (2008) Autophagy: an emerging target for cancer therapy. Autophagy 4: pp. 574-580
    10. Apel, A, Zentgraf, H, Buchler, MW, Herr, I (2009) Autophagy-A double-edged sword in oncology. Int J Cancer 125: pp. 991-995
    11. Mercer, CA, Kaliappan, A, Dennis, PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5: pp. 649-662
    12. Jung, CH, Jun, CB, Ro, SH, Kim, YM, Otto, NM, Cao, J (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20: pp. 1992-2003
    13. Maes, H, Rubio, N, Garg, AD, Agostinis, P (2013) Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 19: pp. 428-446
    14. Jung, CH, Ro, SH, Cao, J, Otto, NM, Kim, DH (2010) mTOR regulation of autophagy. FEBS Lett 584: pp. 1287-1295
    15. Kim, J, Kundu, M, Viollet, B, Guan, KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: pp. 132-141
    16. Geng, J, Klionsky, DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 鈥楶rotein modifications: beyond the usual suspects鈥?review series. EMBO Rep 9: pp. 859-864
    17. Mizushima, N, Kuma, A, Kobayashi, Y, Yamamoto, A, Matsubae, M, Takao, T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116: pp. 1679-1688
    18. Kabeya, Y, Mizushima, N, Ueno, T, Yamamoto, A, Kirisako, T, Noda, T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: pp. 5720-5728
    19. Kondo, Y, Kanzawa, T, Sawaya, R, Kondo, S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: pp. 726-734
    20. Yang, K, Fang, H, Gong, J, Su, L, Xu, W (2009) An overview of highly optically pure chloramphenicol bases: applications and modifications. Mini Rev Med Chem 9: pp. 1329-1341
    21. Kroemer, G, Marino, G, Levine, B (2010) Autophagy and the integrated stress response. Mol Cell 40: pp. 280-293
    22. Vaupel, P, Hockel, M, Mayer, A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9: pp. 1221-1235
    23. Vaupel, P, Mayer, A (2005) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Clin Biol 12: pp. 5-10
    24. Vaupel, P, Briest, S, Hockel, M (2002) Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr 152: pp. 334-342
    25. Vaupel, P, Mayer, A, Hockel, M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381: pp. 335-354
    26. Vaupel, P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: pp. 198-206
    27. Majmundar, AJ, Wong, WJ, Simon, MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40: pp. 294-309
    28. Mazure, NM, Pouyssegur, J (2010) Hypoxia-induced autophagy: cell death or cell survival?. Curr Opin Cell Biol 22: pp. 177-180
    29. Mazure, NM, Pouyssegur, J (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5: pp. 868-869
    30. Sandoval, H, Thiagarajan, P, Dasgupta, SK, Schumacher, A, Prchal, JT, Chen, M (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: pp. 232-235
    31. Bellot, G, Garcia-Medina, R, Gounon, P, Chiche, J, Roux, D, Pouyssegur, J (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: pp. 2570-2581
    32. Mammucari, C, Milan, G, Romanello, V, Masiero, E, Rudolf, R, Piccolo, P (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: pp. 458-471
    33. Warr, MR, Binnewies, M, Flach, J, Reynaud, D, Garg, T, Malhotra, R (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494: pp. 323-327
    34. Srinivas, V, Bohensky, J, Zahm, AM, Shapiro, IM (2009) Autophagy in mineralizing tissues: microenvironmental perspectives. Cell Cycle 8: pp. 391-393
    35. Kaushik, S, Singh, R, Cuervo, AM (2010) Autophagic pathways and metabolic stress. Diabetes Obes Metab 12: pp. 4-14
    36. Rouschop, KM, Wouters, BG (2009) Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med 9: pp. 417-424
    37. Pouyssegur, J, Dayan, F, Mazure, NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: pp. 437-443
    38. Rouschop, KM, Beucken, T, Dubois, L, Niessen, H, Bussink, J, Savelkouls, K (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120: pp. 127-141
    39. Sato, K, Tsuchihara, K, Fujii, S, Sugiyama, M, Goya, T, Atomi, Y (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67: pp. 9677-9684
    40. Moreau, K, Luo, S, Rubinsztein, DC (2010) Cytoprotective roles for autophagy. Curr Opin Cell Biol 22: pp. 206-211
    41. Jin, S, White, E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3: pp. 28-31
    42. Eng, CH, Abraham, RT (2010) Glutaminolysis yields a metabolic by-product that stimulates autophagy. Autophagy 6: pp. 968-970
    43. Liao, XH, Majithia, A, Huang, X, Kimmel, AR (2008) Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35: pp. 761-770
    44. Kumar, SH, Rangarajan, A (2009) Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83: pp. 8565-8574
    45. Marambio, P, Toro, B, Sanhueza, C, Troncoso, R, Parra, V, Verdejo, H (2010) Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta 1802: pp. 509-518
    46. Kang, R, Tang, D, Schapiro, NE, Livesey, KM, Farkas, A, Loughran, P (2010) The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17: pp. 666-676
    47. Ruderman, NB, Xu, XJ, Nelson, L, Cacicedo, JM, Saha, AK, Lan, F (2010) AMPK and SIRT1: a long-standing partnership?. Am J Physiol Endocrinol Metab 298: pp. E751-760
    48. Spaeth, E, Klopp, A, Dembinski, J, Andreeff, M, Marini, F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15: pp. 730-738
    49. Balkwill, F, Mantovani, A (2001) Inflammation and cancer: back to Virchow?. Lancet 357: pp. 539-545
    50. Hussain, SP, Harris, CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121: pp. 2373-2380
    51. Whiteside, TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27: pp. 5904-5912
    52. Zamarron, BF, Chen, W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7: pp. 651-658
    53. Hanahan, D, Weinberg, RA (2011) Hallmarks of cancer: the next generation. Cell 144: pp. 646-674
    54. Joven, J, Guirro, M, Marine-Casado, R, Rodriguez-Gallego, E, Menendez, JA (2014) Autophagy is an inflammation-related defensive mechanism against disease. Adv Exp Med Biol 824: pp. 43-59
    55. Martinez-Outschoorn, UE, Trimmer, C, Lin, Z, Whitaker-Menezes, D, Chiavarina, B, Zhou, J (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9: pp. 3515-3533
    56. Martinez-Outschoorn, UE, Balliet, RM, Rivadeneira, DB, Chiavarina, B, Pavlides, S, Wang, C (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9: pp. 3256-3276
    57. Chiavarina, B, Whitaker-Menezes, D, Migneco, G, Martinez-Outschoorn, UE, Pavlides, S, Howell, A (2010) HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis. Cell Cycle 9: pp. 3534-3551
    58. Martinez-Outschoorn, UE, Whitaker-Menezes, D, Lin, Z, Flomenberg, N, Howell, A, Pestell, RG (2011) Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 10: pp. 1784-1793
    59. Miranti, CK, Brugge, JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4: pp. E83-90
    60. Gilmore, AP (2005) Anoikis. Cell Death Differ 12: pp. 1473-1477
    61. Debnath, J (2008) Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 4: pp. 351-353
    62. Lock, R, Debnath, J (2008) Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 20: pp. 583-588
    63. Tuloup-Minguez, V, Greffard, A, Codogno, P, Botti, J (2011) Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells. Autophagy 7: pp. 27-39
    64. Debnath, J, Mills, KR, Collins, NL, Reginato, MJ, Muthuswamy, SK, Brugge, JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: pp. 29-40
    65. Fung, C, Lock, R, Gao, S, Salas, E, Debnath, J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19: pp. 797-806
    66. Chen, N, Debnath, J (2013) IkappaB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9: pp. 1214-1227
    67. Du, J, Teng, RJ, Guan, T, Eis, A, Kaul, S, Konduri, GG (2012) Role of autophagy in angiogenesis in aortic endothelial cells. Am J Physiol Cell Physiol 302: pp. C383-391
    68. Sachdev, U, Cui, X, Hong, G, Namkoong, S, Karlsson, JM, Baty, CJ (2012) High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury. J Vasc Surg 55: pp. 180-191
    69. Kang, R, Livesey, KM, Zeh, HJ, Loze, MT, Tang, D (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6: pp. 1209-1211
    70. Martinez-Outschoorn, UE, Lin, Z, Trimmer, C, Flomenberg, N, Wang, C, Pavlides, S (2011) Cancer cells metabolically 鈥渇ertilize鈥?the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 10: pp. 2504-2520
    71. Capparelli, C, Guido, C, Whitaker-Menezes, D, Bonuccelli, G, Balliet, R, Pestell, TG (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11: pp. 2285-2302
    72. Marino, ML, Pellegrini, P, Lernia, G, Djavaheri-Mergny, M, Brnjic, S, Zhang, X (2012) Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem 287: pp. 30664-30676
    73. Folkman, J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13: pp. 159-167
    74. Lum, JJ, Bauer, DE, Kong, M, Harris, MH, Li, C, Lindsten, T (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: pp. 237-248
    75. Qu, X, Yu, J, Bhagat, G, Furuya, N, Hibshoosh, H, Troxel, A (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: pp. 1809-1820
    76. Yue, Z, Jin, S, Yang, C, Levine, AJ, Heintz, N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100: pp. 15077-15082
    77. Liang, XH, Jackson, S, Seaman, M, Brown, K, Kempkes, B, Hibshoosh, H (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: pp. 672-676
    78. Thorburn, J, Frankel, AE, Thorburn, A (2009) Regulation of HMGB1 release by autophagy. Autophagy 5: pp. 247-249
    79. White, E, DiPaola, RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15: pp. 5308-5316
    80. Degterev, A, Yuan, J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9: pp. 378-390
    81. Shen, HM, Codogno, P (2012) Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 318: pp. 1304-1308
    82. Munoz-Gamez, JA, Rodriguez-Vargas, JM, Quiles-Perez, R, Aguilar-Quesada, R, Martin-Oliva, D, Murcia, G, Menissier de Murcia, J, Almendros, A, Ruiz de Almodovar, M, Oliver, FJ (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5: pp. 61-74
    83. Pikarsky, E, Porat, RM, Stein, I, Abramovitch, R, Amit, S, Kasem, S (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431: pp. 461-466
    84. Massey, DC, Parkes, M (2007) Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn鈥檚 disease. Autophagy 3: pp. 649-651
    85. Saitoh, T, Fujita, N, Jang, MH, Uematsu, S, Yang, BG, Satoh, T (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: pp. 264-268
    86. Zhou, R, Yazdi, AS, Menu, P, Tschopp, J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469: pp. 221-225
    87. Bulua, AC, Simon, A, Maddipati, R, Pelletier, M, Park, H, Kim, KY (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208: pp. 519-533
    88. Walmsley, SR, Print, C, Farahi, N, Peyssonnaux, C, Johnson, RS, Cramer, T (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201: pp. 105-115
    89. Mihalache, CC, Yousefi, S, Conus, S, Villiger, PM, Schneider, EM, Simon, HU (2011) Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J Immunol 186: pp. 6532-6542
    90. Naldini, A, Morena, E, Pucci, A, Miglietta, D, Riboldi, E, Sozzani, S (2012) Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1alpha and lipopolysaccharide. J Cell Physiol 227: pp. 587-595
    91. Levine, B, Deretic, V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7: pp. 767-777
    92. Schmid, D, Munz, C (2007) Innate and adaptive immunity through autophagy. Immunity 27: pp. 11-21
    93. Pua, HH, Dzhagalov, I, Chuck, M, Mizushima, N, He, YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204: pp. 25-31
    94. Hubbard, VM, Valdor, R, Patel, B, Singh, R, Cuervo, AM, Macian, F (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185: pp. 7349-7357
    95. Jia, W, He, YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186: pp. 5313-5322
    96. Viry, E, Paggetti, J, Baginska, J, Mgrditchian, T, Berchem, G, Moussay, E (2014) Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity. Biochem Pharmacol 92: pp. 31-42
    97. Kimmelman, AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25: pp. 1999-2010
    98. Wang, RC, Wei, Y, An, Z, Zou, Z, Xiao, G, Bhagat, G (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: pp. 956-959
    99. Marino, G, Salvador-Montoliu, N, Fueyo, A, Knecht, E, Mizushima, N, Lopez-Otin, C (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282: pp. 18573-18583
    100. Liang, C, Feng, P, Ku, B, Dotan, I, Canaani, D, Oh, BH (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: pp. 688-699
    101. Takahashi, Y, Coppola, D, Matsushita, N, Cualing, HD, Sun, M, Sato, Y (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9: pp. 1142-1151
    102. Takamura, A, Komatsu, M, Hara, T, Sakamoto, A, Kishi, C, Waguri, S (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: pp. 795-800
    103. Cadwell, K, Liu, JY, Brown, SL, Miyoshi, H, Loh, J, Lennerz, JK (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456: pp. 259-263
    104. Cadwell, K, Patel, KK, Komatsu, M, Virgin, HW, Stappenbeck, TS (2009) A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5: pp. 250-252
    105. Sun, K, Guo, XL, Zhao, QD, Jing, YY, Kou, XR, Xie, XQ (2013) Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats. Cell Death Dis 4: pp. e501
    106. Altman, BJ, Jacobs, SR, Mason, EF, Michalek, RD, MacIntyre, AN, Coloff, JL (2011) Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene 30: pp. 1855-1867
    107. Guo, JY, Chen, HY, Mathew, R, Fan, J, Strohecker, AM, Karsli-Uzunbas, G (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: pp. 460-470
    108. Wei, H, Wei, S, Gan, B, Peng, X, Zou, W, Guan, JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: pp. 1510-1527
    109. Li, J, Hou, N, Faried, A, Tsutsumi, S, Kuwano, H (2010) Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 46: pp. 1900-1909
    110. Liu, D, Yang, Y, Liu, Q, Wang, J (2011) Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Med Oncol 28: pp. 105-111
    111. Kenific, CM, Thorburn, A, Debnath, J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22: pp. 241-245
    112. Karantza-Wadsworth, V, Patel, S, Kravchuk, O, Chen, G, Mathew, R, Jin, S (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21: pp. 1621-1635
    113. Mortensen, M, Soilleux, EJ, Djordjevic, G, Tripp, R, Lutteropp, M, Sadighi-Akha, E (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208: pp. 455-467
    114. Wang, C, Liang, CC, Bian, ZC, Zhu, Y, Guan, JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16: pp. 532-542
    115. Scaffidi, P, Misteli, T, Bianchi, ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: pp. 191-195
    116. Rabinowitz, JD, White, E (2010) Autophagy and metabolism. Science 330: pp. 1344-1348
    117. Yang, S, Kimmelman, AC (2011) A critical role for autophagy in pancreatic cancer. Autophagy 7: pp. 912-913
    118. Yang, X, Hou, J, Han, Z, Wang, Y, Hao, C, Wei, L (2013) One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell & bioscience 3: pp. 5
    119. Konopleva, M, Konoplev, S, Hu, W, Zaritskey, AY, Afanasiev, BV, Andreeff, M (2002) Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16: pp. 1713-1724
    120. Lwin, T, Hazlehurst, LA, Li, Z, Dessureault, S, Sotomayor, E, Moscinski, LC (2007) Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin鈥檚 lymphoma cells. Leukemia 21: pp. 1521-1531
    121. Nefedova, Y, Landowski, TH, Dalton, WS (2003) Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17: pp. 1175-1182
    122. Ame-Thomas, P, Maby-El Hajjami, H, Monvoisin, C, Jean, R, Monnier, D, Caulet-Maugendre, S (2007) Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 109: pp. 693-702
    123. Sanchez, CG, Penfornis, P, Oskowitz, AZ, Boonjindasup, AG, Cai, DZ, Dhule, SS (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32: pp. 964-972
    124. Yang, ZJ, Chee, CE, Huang, S, Sinicrope, FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10: pp. 1533-1541
    125. Ruiz-Irastorza, G, Ramos-Casals, M, Brito-Zeron, P, Khamashta, MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69: pp. 20-28
  • 刊物主题:Cell Biology; Microbiology;
  • 出版者:BioMed Central
  • ISSN:2045-3701
文摘
Development of a tumor is a very complex process, and invasion and metastasis of malignant tumors are hallmarks and are difficult problems to overcome. The tumor microenvironment plays an important role in controlling tumor fate and autophagy induced by the tumor microenvironment is attracting more and more attention. Autophagy can be induced by several stressors in the tumor microenvironment and autophagy modifies the tumor microenvironment, too. Autophagy has dual roles in tumor growth. In this review, we discussed the interaction between autophagy and the tumor microenvironment and the paradoxical roles of autophagy on tumor growth at different stages of tumor development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700