Cell therapy in diabetes: current progress and future prospects
详细信息    查看全文
  • 作者:Ying Wang ; Tang Hai ; Lei Liu ; Zhonghua Liu ; Qi Zhou
  • 关键词:Diabetes ; Cell therapy ; Signaling pathway ; Xenotransplantation
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:60
  • 期:20
  • 页码:1744-1751
  • 全文大小:627 KB
  • 参考文献:1.Whiting DR, Guariguata L, Weil C et al (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321CrossRef
    2.Wang X, Ge S, Gonzalez I et al (2006) Formation of pancreatic duct epithelium from bone marrow during neonatal development. Stem Cells 24:307–314CrossRef
    3.Thatava T, Ma B, Rohde M et al (2006) Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858–2867CrossRef
    4.Chandra V, Swetha G, Phadnis S et al (2009) Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells 27:1941–1953
    5.Yang JH, Lee SH, Heo YT et al (2010) Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochem Biophys Res Commun 397:679–684CrossRef
    6.Meier JJ, Bhushan A, Butler PC (2006) The potential for stem cell therapy in diabetes. Pediatr Res 59:65r–73rCrossRef
    7.Van Hoof D, D’Amour KA, German MS (2009) Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 3:73–87CrossRef
    8.Bock C, Kiskinis E, Verstappen G et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452CrossRef
    9.Liu X, Wang Y, Li Y et al (2013) Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 56:306–312CrossRef
    10.Lumelsky N, Blondel O, Laeng P et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394CrossRef
    11.Boyd AS, Wu DC, Higashi Y et al (2008) A comparison of protocols used to generate insulin-producing cell clusters from mouse embryonic stem cells. Stem Cells 26:1128–1137CrossRef
    12.Segev H, Fishman B, Ziskind A et al (2004) Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22:265–274CrossRef
    13.Sui L, Mfopou JK, Chen B et al (2013) Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth, and differentiation. Cell Transpl 22:821–830CrossRef
    14.Jiang J, Au M, Lu K et al (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953CrossRef
    15.Morrison GM, Oikonomopoulou I, Migueles RP et al (2008) Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell 3:402–415CrossRef
    16.Tateishi K, He J, Taranova O et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607CrossRef
    17.Shiraki N, Yoshida T, Araki K et al (2008) Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 26:874–885CrossRef
    18.Bernardo AS, Cho CH, Mason S et al (2009) Biphasic induction of Pdx1 in mouse and human embryonic stem cells can mimic development of pancreatic beta-cells. Stem Cells 27:341–351CrossRef
    19.Treff NR, Vincent RK, Budde ML et al (2006) Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells 24:2529–2537CrossRef
    20.Wang P, Rodriguez RT, Wang J et al (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8:335–346CrossRef
    21.Lavon N, Yanuka O, Benvenisty N (2006) The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 24:1923–1930CrossRef
    22.Kubo A, Stull R, Takeuchi M et al (2011) Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population. PLoS One 6:e24058CrossRef
    23.Xu H, Tsang KS, Chan JC et al (2013) The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transpl 22:147–158CrossRef
    24.Kaitsuka T, Noguchi H, Shiraki N et al (2014) Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med 3:114–127CrossRef
    25.Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439CrossRef
    26.Turovets N, D’Amour KA, Agapov V et al (2011) Human parthenogenetic stem cells produce enriched populations of definitive endoderm cells after trichostatin A pretreatment. Differentiation 81:292–298CrossRef
    27.Urban VS, Kiss J, Kovacs J et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253CrossRef
    28.Khorsandi L, Nejad-Dehbashi F, Ahangarpour A et al (2015) Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells. Tissue Cell 47:66–72CrossRef
    29.Yuan H, Liu H, Tian R et al (2012) Regulation of mesenchymal stem cell differentiation and insulin secretion by differential expression of Pdx-1. Mol Biol Rep 39:7777–7783CrossRef
    30.Li L, Li F, Qi H et al (2008) Coexpression of Pdx1 and betacellulin in mesenchymal stem cells could promote the differentiation of nestin-positive epithelium-like progenitors and pancreatic islet-like spheroids. Stem Cells Dev 17:815–823CrossRef
    31.Moriscot C, de Fraipont F, Richard MJ et al (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594–603CrossRef
    32.Wilson LM, Wong SH, Yu N et al (2009) Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells. Stem Cells 27:2703–2711CrossRef
    33.Yoshida S, Ishikawa F, Kawano N et al (2005) Human cord blood–derived cells generate insulin-producing cells in vivo. Stem Cells 23:1409–1416CrossRef
    34.Li Y, Zhao LJ, Xia FZ et al (2012) Transdifferentiation of hepatic oval cells into pancreatic islet beta-cells. Front Biosci (Landmark Ed) 17:2391–2395CrossRef
    35.Li H, Li X, Lam KS et al (2008) Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats. J Biomed Sci 15:487–497CrossRef
    36.Kodama S, Kuhtreiber W, Fujimura S et al (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227CrossRef
    37.Kim B, Yoon BS, Moon JH et al (2012) Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells. Exp Mol Med 44:26–35CrossRef
    38.Pennarossa G, Maffei S, Campagnol M et al (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA 110:8948–8953CrossRef
    39.Dor Y, Brown J, Martinez OI et al (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46CrossRef
    40.Smukler SR, Arntfield ME, Razavi R et al (2011) The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8:281–293CrossRef
    41.Kawakami M, Hirayama A, Tsuchiya K et al (2010) Promotion of beta-cell differentiation by the alkaloid conophylline in porcine pancreatic endocrine cells. Biomed Pharmacother 64:226–231CrossRef
    42.Stevenson K, Chen D, MacIntyre A et al (2011) Pancreatic-derived pathfinder cells enable regeneration of critically damaged adult pancreatic tissue and completely reverse streptozotocin-induced diabetes. Rejuvenation Res 14:163–171CrossRef
    43.Ta M, Choi Y, Atouf F et al (2006) The defined combination of growth factors controls generation of long-term-replicating islet progenitor-like cells from cultures of adult mouse pancreas. Stem Cells 24:1738–1749CrossRef
    44.Choi Y, Ta M, Atouf F et al (2004) Adult pancreas generates multipotent stem cells and pancreatic and nonpancreatic progeny. Stem Cells 22:1070–1084CrossRef
    45.Xu X, D’Hoker J, Stange G et al (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207CrossRef
    46.Sancho R, Gruber R, Gu G et al (2014) Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell 15:139–153CrossRef
    47.Lemper M, Leuckx G, Heremans Y et al (2014) Reprogramming of human pancreatic exocrine cells to beta-like cells. Cell Death Differ. doi:10.​1038/​cdd.​2014.​193
    48.Collombat P, Xu X, Ravassard P et al (2009) The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 138:449–462CrossRef
    49.Liu Z, Habener JF (2009) Alpha cells beget beta cells. Cell 138:424–426CrossRef
    50.Chung CH, Hao E, Piran R et al (2010) Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells 28:1630–1638CrossRef
    51.Habener JF, Stanojevic V (2012) Alpha-cell role in beta-cell generation and regeneration. Islets 4:188–198CrossRef
    52.Ameri J, Stahlberg A, Pedersen J et al (2010) FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 28:45–56
    53.Teo AK, Ali Y, Wong KY et al (2012) Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 30:631–642CrossRef
    54.Li L, Yi Z, Seno M et al (2004) Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 53:608–615CrossRef
    55.Mfopou JK, De Groote V, Xu X et al (2007) Sonic hedgehog and other soluble factors from differentiating embryoid bodies inhibit pancreas development. Stem Cells 25:1156–1165CrossRef
    56.Afelik S, Pool B, Schmerr M et al (2015) Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol 399:204–217CrossRef
    57.Shi Y, Hou L, Tang F et al (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23:656–662CrossRef
    58.Zhang D, Jiang W, Liu M et al (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438CrossRef
    59.Kao DI, Lacko LA, Ding BS et al (2015) Endothelial cells control pancreatic cell fate at defined stages through EGFL7 signaling. Stem Cell Rep 4:181–189CrossRef
    60.Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567CrossRef
    61.He J, Yang Z, Yang H et al (2015) Regulation of insulin sensitivity, insulin production, and pancreatic beta cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus. Peptides 64:49–54CrossRef
    62.Karnieli O, Izhar-Prato Y, Bulvik S et al (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844CrossRef
    63.Sordi V, Melzi R, Mercalli A et al (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28:140–151CrossRef
    64.Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRef
    65.Schneider S, Feilen PJ, Brunnenmeier F et al (2005) Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 54:687–693CrossRef
    66.Matveyenko AV, Singh I, Shin BC et al (2010) Differential effects of prenatal and postnatal nutritional environment on ss-cell mass development and turnover in male and female rats. Endocrinology 151:5647–5656CrossRef
    67.Hamilton DC, Shih HH, Schubert RA et al (2015) A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regen Med. doi:10.​1002/​term.​1990
    68.Nishimura R, Ushiyama A, Sekiguchi S et al (2013) Effects of glucagon-like peptide 1 analogue on the early phase of revascularization of transplanted pancreatic islets in a subcutaneous site. Transpl Proc 45:1892–1894CrossRef
    69.Coronel MM, Stabler CL (2013) Engineering a local microenvironment for pancreatic islet replacement. Curr Opin Biotechnol 24:900–908CrossRef
    70.Leung KK, Liang J, Ma MT et al (2012) Angiotensin II type 2 receptor is critical for the development of human fetal pancreatic progenitor cells into islet-like cell clusters and their potential for transplantation. Stem Cells 30:525–536CrossRef
    71.Li G, Huang LS, Jiang MH et al (2010) Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats. Acta Pharmacol Sin 31:1454–1463CrossRef
    72.Dufrane D, Gianello P (2012) Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transpl Rev (Orlando) 26:183–188CrossRef
    73.Lee JI, Shin JS, Jung WY et al (2013) Porcine islet adaptation to metabolic need of monkeys in pig-to-monkey intraportal islet xenotransplantation. Transpl Proc 45:1866–1868CrossRef
    74.van der Windt DJ, Marigliano M, He J et al (2012) Early islet damage after direct exposure of pig islets to blood: has humoral immunity been underestimated? Cell Transpl 21:1791–1802CrossRef
    75.Lee SH, Hao E, Savinov AY et al (2009) Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation 87:983–991CrossRef
    76.Bruin JE, Rezania A, Xu J et al (2013) Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56:1987–1998CrossRef
    77.Barnett BP, Arepally A, Karmarkar PV et al (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991CrossRef
    78.Hering BJ, Wijkstrom M, Graham ML et al (2006) Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 12:301–303CrossRef
    79.Cardona K, Korbutt GS, Milas Z et al (2006) Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 12:304–306CrossRef
    80.Speier S, Nyqvist D, Cabrera O et al (2008) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574–578CrossRef
    81.Yolcu ES, Zhao H, Shirwan H (2013) Immunomodulation with SA-FasL protein as an effective means of preventing islet allograft rejection in chemically diabetic NOD mice. Transpl Proc 45:1889–1891CrossRef
  • 作者单位:Ying Wang (1) (2)
    Tang Hai (2)
    Lei Liu (2)
    Zhonghua Liu (1)
    Qi Zhou (2)

    1. College of Life Sciences, Northeast Agricultural University of China, Harbin, 150030, China
    2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Diabetes mellitus, characterized by the impaired metabolism of insulin secretion in β cells, is becoming one of the most prevalent diseases around the world. Recently, cell replacement based on differentiation of various pluripotent stem cells, including embryonic stem cells, induced pluripotent stem cells and multipotent stem cells, such as bone marrow mesenchymal stem cells, adipose-derived stem cells and gnotobiotic porcine skin-derived stem cells, is becoming a promising therapeutic strategy. Cells derived from pancreatic tissues or other tissues that are relevant to β cell differentiation have also been used as cell source. However, in spite of hopeful experimental results, cell therapy in diabetes still confronts certain obstacles, such as purity of cells, functional differentiation of stem cells and possible tumorigenesis, which, in turn, lead to the seeking of new-generation tools, such as xenogenetic materials. In this review, we will summarize the current knowledge and future prospects of cell therapy in diabetes mellitus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700