Spatial assessment of vegetation vulnerability to accumulated drought in Northeast China
详细信息    查看全文
  • 作者:Haifeng Zheng ; Guoqiang Shen ; Xingyuan He ; Xingyang Yu
  • 关键词:Exposure ; Sensitivity ; Spatial heterogeneity ; Drought adaptation
  • 刊名:Regional Environmental Change
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:8
  • 页码:1639-1650
  • 全文大小:3,420 KB
  • 参考文献:Adger WN (2006) Vulnerability. Glob Environ Change Hum Policy Dimens 16(3):268鈥?81. doi:10.鈥?016/鈥媕.鈥媑loenvcha.鈥?006.鈥?2.鈥?06 CrossRef
    Antwi-Agyei P, Fraser EDG, Dougill AJ, Stringer LC, Simelton E (2012) Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl Geogr 32(2):324鈥?34. doi:10.鈥?016/鈥媕.鈥媋pgeog.鈥?011.鈥?6.鈥?10 CrossRef
    Brent NH (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417鈥?434. doi:10.鈥?080/鈥?143116860894894鈥? CrossRef
    Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102(42):15144鈥?5148. doi:10.鈥?073/鈥媝nas.鈥?505734102 CrossRef
    Chen SK, Jang CS, Peng YH (2013) Developing a probability-based model of aquifer vulnerability in an agricultural region. J Hydrol 486:494鈥?04. doi:10.鈥?016/鈥媕.鈥媕hydrol.鈥?013.鈥?2.鈥?19 CrossRef
    Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529鈥?33. doi:10.鈥?038/鈥媙ature03972 CrossRef
    Cutter SL, Finch C (2008) Temporal and spatial changes in social vulnerability to natural hazards. Proc Natl Acad Sci USA 105(7):2301鈥?306. doi:10.鈥?073/鈥媝nas.鈥?710375105 CrossRef
    Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52鈥?8. doi:10.鈥?038/鈥媙climate1633 CrossRef
    Dai A, Trenberth KE, Qian TT (2004) A global dataset of Palmer Drought Severity Index for 1870鈥?002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5(6):1117鈥?130. doi:10.鈥?175/鈥媕hm-386.鈥? CrossRef
    Dlamini W (2011) Probabilistic spatio-temporal assessment of vegetation vulnerability to climate change in Swaziland. Glob Change Biol 17(3):1425鈥?441. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?010.鈥?2317.鈥媥 CrossRef
    Dong G, Guo JX, Chen JQ, Sun G, Gao S, Hu LJ, Wang YL (2011) Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China. Ecohydrology 4(2):211鈥?24. doi:10.鈥?002/鈥婨co.鈥?00 CrossRef
    F眉ssel HM (2007) Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Change Hum Policy Dimens 17(2):155鈥?67. doi:10.鈥?016/鈥媕.鈥媑loenvcha.鈥?006.鈥?5.鈥?02 CrossRef
    Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19(6):755鈥?68. doi:10.鈥?111/鈥媕.鈥?466-8238.鈥?010.鈥?0558.鈥媥 CrossRef
    Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour As 34(1):113鈥?21. doi:10.鈥?111/鈥媕.鈥?752-1688.鈥?998.鈥媡b05964.鈥媥 CrossRef
    Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80(3):429鈥?38. doi:10.鈥?175/鈥?520-0477(1999)080<0429:鈥媘tduts>2.鈥?.鈥媍o;2 CrossRef
    Ionescu C, Klein RJT, Hinkel J, Kumar KSK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1鈥?6. doi:10.鈥?007/鈥媠10666-008-9179-x CrossRef
    Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ 87(1):85鈥?8. doi:10.鈥?016/鈥媠0034-4257(03)00174-3 CrossRef
    Lal R, Delgado PM, Groffman PM, Milar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):276鈥?85. doi:10.鈥?489/鈥媕swc.鈥?6.鈥?.鈥?76 CrossRef
    Liu XD, Yin ZY, Zhang XY, Yang XC (2004) Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J Geophys Res Atmos 109(D16). doi:10.鈥?029/鈥?004jd004615
    Liu G, Liu HY, Yin Y (2013) Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ Res Lett 8(2). doi:10.鈥?088/鈥?748-9326/鈥?/鈥?/鈥?25009
    Luers AL (2005) The surface of vulnerability: an analytical framework for examining environmental change. Glob Environ Change Hum Policy Dimens 15(3):214鈥?23. doi:10.鈥?016/鈥媕.鈥媑loenvcha.鈥?005.鈥?4.鈥?03 CrossRef
    Luers AL, Lobell DB, Sklar LS, Addams CL, Matson PA (2003) A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob Environ Change Hum Policy Dimens 13(4):255鈥?67. doi:10.鈥?016/鈥媠0959-3780(03)00054-2 CrossRef
    Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25(1):9鈥?4. doi:10.鈥?080/鈥?143116031000115鈥?65 CrossRef
    McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Eighth Conference on Applied Climatology, pp 179鈥?84
    Metzger MJ, Schroter D, Leemans R, Cramer W (2008) A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. Reg Environ Change 8(3):91鈥?07. doi:10.鈥?007/鈥媠10113-008-0044-x CrossRef
    Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (eds) Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
    Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151(12):1800鈥?811. doi:10.鈥?016/鈥媕.鈥媋grformet.鈥?011.鈥?7.鈥?18 CrossRef
    Potter C, Klooster S, Hiatt C, Genovese V, Castilla-Rubio JC (2011) Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environ Res Lett 6(3). doi:10.鈥?088/鈥?748-9326/鈥?/鈥?/鈥?34024
    Quiring SM, Ganesh S (2010) Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric For Meteorol 150(3):330鈥?39. doi:10.鈥?016/鈥媕.鈥媋grformet.鈥?009.鈥?1.鈥?15 CrossRef
    Sheffield J, Wood EF (2011) Drought: past problems and future scenarios. Earthscan, UK, p 150
    State Statistical Bureau (SSB) of China (2010) China agriculture statistical yearbook. China Statistical Press, Beijing
    Turner BL (2010) Vulnerability and resilience: coalescing or paralleling approaches for sustainability science? Glob Environ Change Hum Policy Dimens 20(4):570鈥?76. doi:10.鈥?016/鈥媕.鈥媑loenvcha.鈥?010.鈥?7.鈥?03 CrossRef
    Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci USA 100(14):8074鈥?079. doi:10.鈥?073/鈥媝nas.鈥?231335100 CrossRef
    Vicente-Serrano SM (2007) Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Nat Hazards 40(1):173鈥?08. doi:10.鈥?007/鈥媠11069-006-0009-7 CrossRef
    Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696鈥?718. doi:10.鈥?175/鈥?009jcli2909.鈥? CrossRef
    Vicente-Serrano SM, Gouveia C, Camarero JJ, Begueria S, Trigo R, Lopez-Moreno JI, Azorin-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110(1):52鈥?7. doi:10.鈥?073/鈥媝nas.鈥?207068110 CrossRef
    Wang AH, Lettenmaier DP, Sheffield J (2011) Soil moisture drought in China, 1950鈥?006. J Clim 24(13):3257鈥?271. doi:10.鈥?175/鈥?011jcli3733.鈥? CrossRef
    Wang ZQ, He F, Fang WH, Liao YF (2013) Assessment of physical vulnerability to agricultural drought in China. Nat Hazards 67(2):645鈥?57. doi:10.鈥?007/鈥媠11069-013-0594-1 CrossRef
    Wilhelmi OV, Wilhite DA (2002) Assessing vulnerability to agricultural drought: a Nebraska case study. Nat Hazards 25(1):37鈥?8. doi:10.鈥?023/鈥媋:鈥?013388814894 CrossRef
    Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys 56(4):1102鈥?111. doi:10.鈥?038/鈥媍jg20130406
    Wu JJ, He B, Lu AF, Zhou L, Liu M, Zhao L (2011) Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China. Nat Hazards 56(3):785鈥?01. doi:10.鈥?007/鈥媠11069-010-9591-9 CrossRef
    Xu Y, Gao XJ, Shen Y, Xu CM, Shi Y, Giorgi F (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26(4):763鈥?72. doi:10.鈥?007/鈥媠00376-009-9029-z CrossRef
    Xu L, Samanta A, Costa MH, Ganguly S, Nemani RR, Myneni RB (2011) Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys Res Lett 38. doi:10.鈥?029/鈥?011gl046824
    Yu XY, He XY, Zheng HF, Guo RC, Ren ZB, Zhang D, Lin JX (2014) Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat Hazards 71(1):275鈥?89. doi:10.鈥?007/鈥媠11069-013-0909-2 CrossRef
    Zheng HF, Chen LD, Han XZ, Zhao XF, Ma Y (2009) Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: the importance of phosphorus application rates under drought conditions. Agr Ecosyst Environ 132(1鈥?):98鈥?05. doi:10.鈥?016/鈥媕.鈥媋gee.鈥?009.鈥?3.鈥?04 CrossRef
    Zou XK, Zhai PM, Zhang Q (2005) Variations in droughts over China: 1951-2003. Geophys Res Lett 32(4). doi:10.鈥?029/鈥?004gl021853
  • 作者单位:Haifeng Zheng (1)
    Guoqiang Shen (1) (2)
    Xingyuan He (1)
    Xingyang Yu (1) (2)
    Zhibin Ren (1) (2)
    Dan Zhang (1) (2)

    1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Road, Changchun, Jilin Province, 130102, People鈥檚 Republic of China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Geoecology and Natural Processes
    Geology
    Oceanography
    Geography
    Nature Conservation
    Regional Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-378X
文摘
Drought is considered as one of the main forces driving current and likely future ecosystem productivity loss and vegetation mortality. Therefore, understanding where, when and which vegetation type would be most vulnerable to drought is a prerequisite for developing effective adaptation strategies. Based on accumulated standardized precipitation index calculated from April and normalized difference vegetation index obtained from satellite images, we evaluated regional vegetation vulnerability across Northeast China to drought at different stages of summer (June, July and August), when plant growth is highly affected by drought conditions. The findings indicated that vegetation vulnerability to drought varied noticeably with vegetation growth stages and geographical areas. Vegetation growth at early stage (up to June) was most vulnerable to accumulated drought, while it was least vulnerable until the period of peak greenness (in August). A similar spatial pattern of drought vulnerability was observed in different vegetative stages, with higher vulnerability in the west, south and some parts of northeast east of the study region. The pattern is closely associated with land use types. Generally, cropland, wetland and saline and alkaline land showed a much higher vulnerability, as vegetation growing on them had low ground cover and was more affected by accumulated drought conditions. Our results identified the vegetative growth stages and growing areas likely to exhibit high vulnerability to drought and might help improve the basis both for vegetation management and for the development of specific drought adaptation options. Keywords Exposure Sensitivity Spatial heterogeneity Drought adaptation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700