A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems
详细信息    查看全文
  • 作者:Hongfei Fu ; Hongxing Rui ; Jian Hou ; Haihong Li
  • 关键词:Optimal control ; Stabilized mixed finite element ; LBB condition ; A priori error estimates ; Numerical experiments ; 49K20 ; 49M25 ; 65N15 ; 65N30
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:66
  • 期:3
  • 页码:968-986
  • 全文大小:4,324 KB
  • 参考文献:1.Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2002)CrossRef
    2.Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)CrossRef MATH
    3.Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Series in Information and Computational Science, vol. 41. Science Press, Beijing (2008)
    4.Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)CrossRef MATH
    5.Tiba, D.: Lectures on the Optimal Control of Elliptic Equations. University of Jyvaskyla Press, Finland (1995)
    6.Chen, Y., Liu, W.: Error estimates and superconvergence of mixed finite elements for quadratic optimal control. Int. J. Numer. Anal. Model. 3, 311–321 (2006)MathSciNet MATH
    7.Yan, N., Zhou, Z.: A RT mixed FEM/DG scheme for optimal control governed by convection diffusion equations. J. Sci. Comput. 41, 273–299 (2009)CrossRef MathSciNet MATH
    8.Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Methods Appl. Mech. Eng. 199, 1415–1423 (2010)CrossRef MATH
    9.Zhou, J., Chen, Y., Dai, Y.: Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl. Math. Comput. 217, 2057–2066 (2010)CrossRef MathSciNet MATH
    10.Fu, H., Rui, H.: A characteristic-mixed finite element method for time-dependent convection–diffusion optimal control problem. Appl. Math. Comput. 218, 3430–3440 (2011)CrossRef MathSciNet MATH
    11.Gong, W., Yan, N.: Mixed finite element methid for Dirichlet boundary control problems governed by elliptic PDEs. SIAM J. Control Optim. 49, 984–1014 (2011)CrossRef MathSciNet MATH
    12.Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)
    13.Pehlivanov, A.I., Carey, G.F., Lazarov, D.: Least-squares mixed finite elements for second-order elliptic problems. SIAM J. Numer. Anal. 31, 1368–1377 (1994)CrossRef MathSciNet MATH
    14.Cai, Z., Lazarov, R., Manteuffel, T.A., Mccormick, S.F.: First-order system least squares for second-order partial differential equations: part I. SIAM J. Numer. Anal. 31, 1785–1799 (1994)CrossRef MathSciNet MATH
    15.Pani, A.K.: An \(H^1\) -Galerkin mixed finite element method for parabolic partial differential equations. SIAM J. Numer. Anal. 35, 712–727 (1998)CrossRef MathSciNet MATH
    16.Yang, D.P.: A splitting positive defnite mixed element method for miscible displacement ofcompressible flow in porous media. Numer. Methods Part. Differ. Eqn. 17, 229–249 (2001)CrossRef MATH
    17.Rui, H., Kim, S., Kim, S.D.: A remark on least-squares mixed element methods for reaction–diffusion problems. J. Comput. Appl. Math. 202, 230–236 (2007)CrossRef MathSciNet MATH
    18.Gunzburger, M., Lee, H.-C.: A penalty/least-squares method for optimal control problems for first-order elliptic systems. Appl. Math. Comput. 107, 57–75 (2000)CrossRef MathSciNet MATH
    19.Lee, H.-C., Choi, Y.: A least-squares method for optimal control problems for a second-order elliptic system in two dimensions. J. Math. Anal. Appl. 242, 105–128 (2000)CrossRef MathSciNet MATH
    20.Fu, H., Rui, H.: A priori error estimates for least-squares mixed finite element approximation of elliptic optimal control problems. J. Comput. Math. 33, 113–127 (2015)CrossRef MathSciNet
    21.Guo, H., Fu, H., Zhang, J.S.: A splitting positive definite mixed finite element method for elliptic optimal control problems. Appl. Math. Comput. 219, 11178–11190 (2013)CrossRef MathSciNet MATH
    22.Hughes, T., Franca, L.P., Hulbert, G.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)CrossRef MathSciNet MATH
    23.Franca, L.P., Stenberg, R.: Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)CrossRef MathSciNet MATH
    24.Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)CrossRef MATH
    25.Niceno, B.: http://​www-dinma.​univ.​trieste.​it/​nirftc/​research/​easymesh/​easymesh.​html
    26.Li, R., Liu, W.B.: http://​dsec.​pku.​edu.​cn/​dsectest
  • 作者单位:Hongfei Fu (1)
    Hongxing Rui (2)
    Jian Hou (3)
    Haihong Li (1)

    1. College of Science, China University of Petroleum, Qingdao, 266580, China
    2. School of Mathematics, Shandong University, Jinan, 250100, China
    3. College of Petroleum Engineering, China University of Petroleum, Qingdao, 266580, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
In this paper, we propose a new mixed finite element method, called stabilized mixed finite element method, for the approximation of optimal control problems constrained by a first-order elliptic system. This method is obtained by adding suitable elementwise least-squares residual terms for the primal state variable y and its flux \(\sigma \). We prove the coercive and continuous properties for the new mixed bilinear formulation at both continuous and discrete levels. Therefore, the finite element function spaces do not require to satisfy the Ladyzhenkaya–Babuska–Brezzi consistency condition. Furthermore, the state and flux state variables can be approximated by the standard Lagrange finite element. We derive optimality conditions for such optimal control problems under the concept of Discretization-then-Optimization, and then a priori error estimates in a weighted norm are discussed. Finally, numerical experiments are given to confirm the efficiency and reliability of the stabilized method. Keywords Optimal control Stabilized mixed finite element LBB condition A priori error estimates Numerical experiments

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700