用户名: 密码: 验证码:
The neuritogenic and neuroprotective potential of senegenin against Aβ-induced neurotoxicity in PC 12 cells
详细信息    查看全文
  • 作者:Robert Jesky ; Hailong Chen
  • 关键词:Neuritogenesis ; Neuroprotective ; Nootropic ; Cytotoxicity ; PC 12 cells ; Senegenin
  • 刊名:BMC Complementary and Alternative Medicine
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:1,796 KB
  • 参考文献:1.Taylor JP, Hardy T, Fischbeck KH. Toxic Proteins in Neurodegenerative Disease. Science. 2002;296(5575):1991–5.CrossRef PubMed
    2.Selkoe DJ. Alzheimer’s Disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.PubMed
    3.Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRef PubMed
    4.Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998;95(11):6448–53.PubMedCentral CrossRef PubMed
    5.Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.CrossRef PubMed
    6.Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006;27(4):570–5.CrossRef PubMed
    7.Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic Targeting by Alzheimer’s-Related Amyloid-β Oligomers. J Neurosci. 2004;24(45):10191–200.CrossRef PubMed
    8.Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Alzheimer’s Disease International: Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.PubMedCentral CrossRef PubMed
    9.Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells with respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.PubMedCentral CrossRef PubMed
    10.Pollock JD, Krempin M, Rudy B. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J Neurosci. 1990;10(8):2626–37.PubMed
    11.Brugg B, Matus A. PC 12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite growth. J Cell Biol. 1988;107(2):643–50.CrossRef PubMed
    12.Karns LR, Ng SC, Freeman JA, Fishman MC. Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science. 1987;236(4801):597–600.CrossRef PubMed
    13.Van Hooff CO, De Graan PN, Oestreicher AB, Gispen WH. B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J Neurosci. 1988;8(5):1789–95.PubMed
    14.Meiri KF, Pfenninger KH, Willard MB. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp 46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986;83(10):3537–41.PubMedCentral CrossRef PubMed
    15.Costello B, Meymandi A, Freeman JA. Factors Influencing GAP-43 Gene Expression in PC1 2 Pheochromocytoma Cells. J Neurosci. 1990;10(4):1396–406.
    16.Yamada KM, Spooner BS, Wessells NK. Axon growth: role of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970;66(4):1206–12.PubMedCentral CrossRef PubMed
    17.Seeds NW, Gilman AG, Amano T, Nirenberg MW. Regulation of axon formation by clonal lines of neural tumor. Proc Natl Acad Sci U S A. 1970;66(1):160–7.PubMedCentral CrossRef PubMed
    18.Sánchez C, Díaz-Nido J, Avila J. Variations in in viva phosphorylation at the proline-rich domain of the microtubule-associated protein 2 (MAP2) during rat brain development. J Biochem. 1995;306:481–7.CrossRef
    19.Sánchez C, Díaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61(2):133–68.CrossRef PubMed
    20.Pang L, Sawada T, Decker SJ, Saltiel AR. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem. 1995;270:13585–8.CrossRef PubMed
    21.Cáceres A, Banker GA, Binder L. Immunocytochemical Localization of Tubulin and Microtubule-Associated Protein 2 During the Development of Hippocampal Neurons in Culture. J Neurosci. 1986;6(3):714–22.PubMed
    22.Jahn R, Schiebler W, Ouimet C, Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985;82(12):4137–41.PubMedCentral CrossRef PubMed
    23.Nieto-Sampedro M, Nieto-Díaz M. Neural Plasticity: changes with age. J Neural Transm. 2005;112(1):3–27.CrossRef PubMed
    24.Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nature Rev Neurosci. 2006;7:30–40.CrossRef
    25.Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5.CrossRef PubMed
    26.Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.CrossRef PubMed
    27.Kromer LF. Nerve growth factor treatment after brain injury prevents neuronal death. Science. 1987;235(4785):214–6.CrossRef PubMed
    28.Prakash N, Cohen-Cory S, Penschuck S, Frostig RD. Basal forebrain cholinergic system is involved in rapid nerve growth factor (NGF)-induced plasticity in the barrel cortex of adult rats. J Neurophysiol. 2004;91(1):424–37.CrossRef PubMed
    29.Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11(3):272–80.CrossRef PubMed
    30.McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318.CrossRef PubMed
    31.Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, et al. Blood–brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993;259(5093):373–7.CrossRef PubMed
    32.Bäckman C, Rose GM, Hoffer BJ, Henry MA, Bartus RT, Friden P, et al. Systemic administration of a Nerve Growth Factor Conjugate Reverses Age-Related Cognitive Dysfunction and Prevents Cholinergic Neuron Atrophy. J Neurosci. 1996;16(17):5437–42.PubMed
    33.Yamada K, Nitta A, Hasegawa T, Fuji K, Hiramatsu M, Kameyama T, et al. Orally active NGF synthesis stimulators: potential therapeutic agents in Alzheimer’s disease. Behav Brain Res. 1997;83(1–2):117–22.CrossRef PubMed
    34.Pardridge WM. The Blood–brain Barrier: Bottleneck in Brain Drug Development. NeuroRx. 2005;2(1):3–14.PubMedCentral CrossRef PubMed
    35.Liu WB, Liu WZ. Disciplinarian investigation of Chinese complex prescription with promoting intelligence in past dynasties. Jiangxi J Traditional Chin Med. 2005;36:62–3.
    36.Park CH, Choi SH, Koo JW, Seo JH, Kim HS, Jeong SJ, et al. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J Neurosci Res. 2002;70(3):484–92.CrossRef PubMed
    37.Karakida F, Ikeya Y, Tsunakawa M, Yamaguchi T, Ikarashi Y, Takeda S, et al. Cerebral Protective and Cognition-Improving Effects of Sinapic Acid in Rodents. Biol Pharm Bull. 2007;30(3):514–9.CrossRef PubMed
    38.Jia H, Jiang Y, Ruan Y, Zhang Y, Ma X, Zhang J, et al. Tenuigenin treatment decreases secretion of the Alzheimer’s disease amyloid-β protein in cultured cells. Neurosci Lett. 2004;367(1):123–8.CrossRef PubMed
    39.Lv J, Jia H, Jiang Y, Ruan Y, Liu Z, Yue W, et al. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-β secretion in vitro. Acta Physiol (Oxf). 2009;196(4):419–25.CrossRef
    40.Zhang H, Han T, Zhang L, Yu CH, Wan DG, Rahman K, et al. Effects of tenuifolin extracted from radix polygalae on learning and memory: A behavioral and biochemical study on aged and amnesic mice. Phytomedicine. 2008;15(8):587–94.CrossRef PubMed
    41.Yabe T, Tuchida H, Kiyohara H, Takeda T, Yamada H. Induction of NGF synthesis in astrocytes by onjisaponins of Polygala tenuifolia, constituents of kampo (Japanese herbal) medicine Ninjin-yoei-to. Phytomedicine. 2003;10(2–3):106–14.CrossRef PubMed
    42.Park HJ, Lee K, Heo H, Lee M, Kim JW, Whang WW, et al. Effects of Polygala tenuifolia Root Extract on Proliferation of Neural Stem Cells in the Hippocampal CA1 Region. Phytother Res. 2008;22(10):1324–9.CrossRef PubMed
    43.Ban JY, Cho SO, Koh SB, Song KS, Bae K, Seong YH. Protection of amyloid beta protein (25–35)-induced neurotoxicity by methanol extract of Smilacis chinae rhizome in cultured rat cortical neurons. J Ethnopharmacol. 2006;106(2):230–7.CrossRef PubMed
    44.Qian YH, Han H, Hu XD, Shi LL. Protective effect of ginsenoside Rb1 on β-amyloid protein (1–42)-induced neurotoxicity in cortical neurons. Neurol Res. 2008;31:663–7.CrossRef
    45.Sano M, Grossman H, Van Dyk K. Preventing Alzheimer’s disease separating fact from fiction. CNS Drugs. 2008;22:887–902.CrossRef PubMed
    46.Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K. Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology. 2004;29(5):860–8.CrossRef PubMed
    47.Kim JH, Ha HC, Lee MS, Kang JI, Kim HS, Lee SY, et al. Effect of Tremella fuciformis on the Neurite Outgrowth of PC12h Cells and the Improvement of Memory in Rats. Biol Pharm Bull. 2007;30(4):708–14.CrossRef PubMed
    48.Cui L, Locatelli L, Xie MY, Sommadossi JP. Effect of Nucleoside Analogs on Neurite Regeneration and Mitochondrial DNA Synthesis in PC-12 Cells. J Pharmacol Exp Ther. 1997;280(3):1228–34.PubMed
    49.Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol. 2005;144(7):961–71.PubMedCentral CrossRef PubMed
    50.Tohda C, Tamura T, Matsuyama S, Komatsu K. Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol. 2006;149(5):532–41.PubMedCentral CrossRef PubMed
    51.Murphy AN, Fiskum G, Beal MF. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab. 1999;19(3):231–45.CrossRef PubMed
    52.Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, et al. A model for 3-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91(8):3270–4.PubMedCentral CrossRef PubMed
    53.Shearman MS, Ragan CI, Iversen LL. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of 1-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994;91(4):1470–4.PubMedCentral CrossRef PubMed
    54.Hughes E, Burke RM, Doig AJ. Inhibition of Toxicity in the β-Amyloid Peptide Fragment β-(25–35) Using N-Methylated Derivatives: a general strategy to prevent amyloid formation. J Biol Chem. 2000;275(33):25109–15.CrossRef PubMed
    55.Nishida H, Kushida M, Nakajima Y, Ogawa Y, Tatewaki N, Sato S, et al. Amyloid-β-Induced Cytotoxicity of PC-12 Cell Was Attenuated by Shengmai-san Through Redox Regulation and Outgrowth Induction. J Pharmacol Sci. 2007;104(1):73–81.CrossRef PubMed
    56.Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. Caspase-2 mediates neuronal cell death induced by β-Amyloid. J Neurosci. 2000;20(4):1386–92.PubMed
    57.Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. Amyloid-β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19–24.CrossRef PubMed
    58.Hsu MJ, Hsu CY, Chen BC, Chen MC, Ou G, Lin CH. Apoptosis signal regulating kinase 1 in amyloid beta peptide-induced cerebral endothelial cell apoptosis. J Neurosci. 2007;27:5719–29.CrossRef PubMed
    59.Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, et al. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci. 2001;21(19):7551–60.PubMed
    60.Shea TB, Perrone-Bizzozero NI, Beermann ML, Benowitz LI. Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis. J Neurosci. 1991;11(6):1685–90.PubMed
    61.Meiri KF, Willard M, Johnson MI. Distribution and Phosphorylation of the Growth-Associated Protein GAP-43 in Regenerating Sympathetic Neurons in Culture. J Neurosci. 1988;8(7):2571–81.PubMed
    62.Aloyo VJ, Zwiers H, Gispen WH. Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase. J Neurochem. 1983;41(3):649–53.CrossRef PubMed
    63.Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF. Growth-Associated Protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci. 2002;22(1):239–47.PubMed
    64.Hsu L, Jeng AY, Chen KY. Induction of neurite outgrowth from chick embryonic ganglia explants by activators of protein kinase C. Neurosci Lett. 1989;99(3):257–62.CrossRef PubMed
    65.Yankner BA, Benowitz LI, Villa-Komaroff L, Neve RL. Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration. Brain Res Mol Brain Res. 1990;7(1):39–44.CrossRef PubMed
    66.Quinlan EM, Halpain S. Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J Neurosci. 1996;16(23):7627–37.PubMed
    67.Diez-Guerra FJ, Avila J. An increase in phosphorylation of microtubule-associated protein 2 accompanies dendrite extension during the differentiation of cultured hippocampal neurons. Eur J Biochem. 1995;227(1–2):68–77.CrossRef PubMed
    68.Caceres A, Binder LI, Payne MR, Bender P, Rebhun L, Steward O. Different sub cellular localization of tubulin and the microtubule associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J Neurosci. 1984;4:394–410.PubMed
    69.Brugg B, Matus A. Phosphorylation Determines the Binding of Microtubule-associated Protein 2 (MAP2) to Microtubules in Living Cells. J Cell Biol. 1991;114(4):735–43.CrossRef PubMed
    70.Ainsztein AM, Purich DL. Stimulation of Tubulin Polymerization by MAP-2. J Biol Chem. 1994;269(45):28465–71.PubMed
    71.Miyasaka T, Chao MV, Sherline P, Saltiel AR. Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J Biol Chem. 1990;265(8):4730–5.PubMed
  • 作者单位:Robert Jesky (1)
    Hailong Chen (1)

    1. Department of General Surgery–Integrated traditional Chinese and Western medicine, 1st Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
  • 刊物主题:Complementary & Alternative Medicine; Internal Medicine; Chiropractic Medicine;
  • 出版者:BioMed Central
  • ISSN:1472-6882
文摘
Background Improved therapeutics aimed at ameliorating the devastating effects of neurodegenerative diseases, such as Alzheimer’s disease (AD), are pertinent to help attenuate their growing prevalence worldwide. One promising avenue for such therapeutics lies in botanical medicines that have been efficaciously employed in the likes of traditional medicine doctrines for millennium. Integral to this approach is the necessity of neuritogenesis and/or neuroprotection to counterbalance the deleterious effects of amyloid-β (Aβ) proteins. Senegenin, a principle saponin of Polygala tenuifolia Willd., which has empirically shown to improve cognition and intelligence, was chosen to evaluate its cytoprotective potential and possible neuritogenic and neuroprotective effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700