Species-specific effects on salicylic acid content and subsequent Myzus persicae (Sulzer) performance by three phloem-sucking insects infesting Nicotiana tabacum L.
详细信息    查看全文
  • 作者:Xiao Zhang ; Ming Xue ; Haipeng Zhao
  • 关键词:Middle East ; Asia Minor 1 ; Trialeurodes vaporariorum ; Myzus persicae ; Induced defense ; Signal pathway
  • 刊名:Arthropod-Plant Interactions
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:9
  • 期:4
  • 页码:383-391
  • 全文大小:468 KB
  • 参考文献:Alon M, Malka O, Eakteiman G, Elbaz M, Zvi MM, Vainstein A, Morin S (2013) Activation of the phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PLoS ONE. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?076619
    Alvarez AE, Broglia VG, Alberti D鈥橝mato AM, Wouters D, van der Vossen E, Garzo E, Tjallingii WF, Dicke M, Vosman B (2012) Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato aphid Macrosiphum euphorbiae. Insect Sci. doi:10.鈥?111/鈥媕.鈥?744-7917.鈥?012.鈥?1505.鈥媥 PubMed
    Bi MJ (2010) Defense signal pathway induced by Bemisia tabaci on tobacco and the difference of physiological adaptability between B. tabaci and Myzus persicae to the defense responses. Dissertation, Shandong Agriculture University
    Bi MJ, Xue M, Li QL, Wang HT, Liu AH (2010) Effects of feeding on tobacco plants pre-infested by Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype on activities of protective enzymes and digestive enzymes in B. tabaci and Myzus persicae (Homoptera: Aphididae). Acta Entomol Sin 53:139鈥?46
    Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573鈥?584. doi:10.鈥?105/鈥媡pc.鈥?.鈥?.鈥?573 PubMed Central PubMed View Article
    Carr JP, Lewsey MG, Palukaitis P (2010) Signaling in induced resistance. In: Carr JP, Loebenstein G (eds) Natural and engineered resistance to plant viruses, Pt II. Elsevier, San Diego, pp 57鈥?21. doi:10.鈥?016/鈥媠0065-3527(10)76003-6
    Costa HS, Ullman DE, Johnson MW, Tabashnik BE (1993a) Association between Bemisia tabaci density and reduced growth, yellowing, and stem blanching of lettuce, and kai choy. Plant Dis 77:969鈥?72. doi:10.鈥?094/鈥婸D-77-0969 View Article
    Costa HS, Ulmanh DE, Johnson MW, Tabashnik BE (1993b) Squash silverleaf symptoms induced by immature but not adult Bemisia tabaci. Phytopathology 83:763鈥?66. doi:10.鈥?094/鈥婸hyto-83-763 View Article
    de Ilarduya OM, Xie Q, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699鈥?08. doi:10.鈥?094/鈥婱PMI.鈥?003.鈥?6.鈥?.鈥?99 View Article
    De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548鈥?560. doi:10.鈥?111/鈥媕.鈥?365-3040.鈥?009.鈥?2019.鈥媥 View Article
    De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, M茅traux JP, Van Loon L, Dicke M (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923鈥?37. doi:10.鈥?094/鈥婱PMI-18-0923 PubMed View Article
    De Vos M, Van Wendy Z, Koornneef A, Korzelius JP et al (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352鈥?63. doi:10.鈥?104/鈥媝p.鈥?06.鈥?83907 PubMed Central PubMed View Article
    Dinsdale A, Cook L, Riginos C, Buckley Y, Barro PD (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196鈥?08. doi:10.鈥?603/鈥婣N09061 View Article
    Dugravot S, Brunissen L, L茅tocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A (2007) Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomol Exp Appl 123:271鈥?77. doi:10.鈥?111/鈥媕.鈥?570-7458.鈥?007.鈥?0542.鈥媥 View Article
    Estrada-Hernandez MG, Valenzuela-Soto JH, Ibarra-Laclette E, Delano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect鈥檚 life cycle. Physiol Plant 137:44鈥?0. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?009.鈥?1260.鈥媥 PubMed View Article
    Freeman TP, Buckner JS, Nelson DR, Chu CC, Henneberry TJ (2001) Stylet penetration by Bemisia argentifolii (Homoptera: Aleyrodidae) into host leaf tissue. Ann Entomol Soc Am 94:761鈥?68. doi:10.鈥?603/鈥?013-8746(2001)094[0761:鈥婼PBBAH]2.鈥?.鈥婥O;2
    Girling RD, Madison R, Hassall M, Poppy GM, Turner JG (2008) Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. J Exp Bot 59:3077鈥?085. doi:10.鈥?093/鈥媕xb/鈥媏rn163 PubMed View Article
    Hebert SL, Jia LL, Goggin FL (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458鈥?67. doi:10.鈥?603/鈥?046-225X(2007)36[458:鈥婹DIAVA]2.鈥?.鈥婥O;2
    Heidel AJ, Baldwin IT (2004) Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant, Cell Environ 27:1362鈥?373. doi:10.鈥?111/鈥媕.鈥?365-3040.鈥?004.鈥?1228.鈥媥 View Article
    Hu HY, Xue M, Bi MJ, Zhang X, Qu C (2013) Effects of feeding on tobacco plants pre-infested by Bemisia tabaci biotype B on activities of detoxification enzymes in Trialeurodes vaporariorum. J Food Agric Environ 11:1029鈥?034
    Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Ann Rev Entomol 53:431鈥?48. doi:10.鈥?146/鈥媋nnurev.鈥媏nto.鈥?3.鈥?32107.鈥?22456 View Article
    Ishaaya I, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87:1185鈥?189. doi:10.鈥?093/鈥媕ee/鈥?7.鈥?.鈥?185 View Article
    Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195鈥?19. doi:10.鈥?023/鈥婣:鈥?022846630513 View Article
    Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Plant Biol 43:491鈥?21. doi:10.鈥?146/鈥媋nnurev.鈥媝hyto.鈥?3.鈥?40204.鈥?35944
    Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977鈥?94. doi:10.鈥?111/鈥媕.鈥?461-0248.鈥?1093.鈥媥 PubMed View Article
    Karban R, Baldwin I (1997) Induced responses to herbivory. University of Chicago Press, ChicagoView Article
    Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849鈥?65. doi:10.鈥?104/鈥媝p.鈥?06.鈥?90662 PubMed Central PubMed View Article
    Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19(6):655鈥?64. doi:10.鈥?094/鈥婱PMI-19-0655
    Liu TX, Oetting RD, Buntin GD (1994) Evidence of interspecific competition between Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on some greenhouse-grown plants. J Entomol Sci 29:55鈥?5
    Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769鈥?772. doi:10.鈥?126/鈥媠cience.鈥?149887 PubMed View Article
    Maffei ME, Mith枚fer A, Boland W (2007) Before gene expression: early events in plant鈥搃nsect interaction. Trends Plant Sci 12:310鈥?16. doi:10.鈥?016/鈥媕.鈥媡plants.鈥?007.鈥?6.鈥?01 PubMed View Article
    Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell Online 4:359鈥?66. doi:10.鈥?105/鈥媡pc.鈥?.鈥?.鈥?59 View Article
    Maynard DN, Cantliffe DJ (1989) Squash silverleaf and tomato ripening: new vegetable disorders in Florida. University of Florida, Vegetable Crop Fact Sheet VC-37
    McCollum TG, Stoffella PJ, Powell CA, Cantliffe DJ, Hanif-Khan S (2004) Effects of silverleaf whitefly feeding on tomato fruit ripening. Postharvest Biol Tec 31:183鈥?90. doi:10.鈥?016/鈥媕.鈥媝ostharvbio.鈥?003.鈥?9.鈥?01 View Article
    Miles PW (1999) Aphid saliva. Bio Rev 74:41鈥?5. doi:10.鈥?111/鈥媕.鈥?469-185X.鈥?999.鈥媡b00181.鈥媥 View Article
    Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant鈥揳phid interactions. Arch Insect Biochem 51:182鈥?03. doi:10.鈥?002/鈥媋rch.鈥?0064 View Article
    Peng L, Yan Y, Yang CH, Barro PJ, Wan FH (2013) Identification, comparison, and functional analysis of salivary phenol-oxidizing enzymes in Bemisia tabaci B and Trialeurodes vaporariorum. Entomol Exp Appl 147:282鈥?92. doi:10.鈥?111/鈥媏ea.鈥?2068 View Article
    Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 36:1271鈥?285. doi:10.鈥?007/鈥媠10886-010-9868-1 PubMed Central PubMed View Article
    Rekha AR, Maruthi MN, Muniyappa V, Colvin J (2005) Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in south India. Entomol Exp Appl 117:221鈥?33. doi:10.鈥?111/鈥媕.鈥?570-7458.鈥?005.鈥?0352.鈥媥 View Article
    Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563鈥?74. doi:10.鈥?046/鈥媕.鈥?365-313x.鈥?001.鈥?0992.鈥媥 PubMed View Article
    Summers CG, Estrada D (1996) Chlorotic streak of bell pepper: a new toxicogenic disorder induced by feeding of the silverleaf whitefly, Bemisia argentifolii. Plant Dis 80:822. doi:10.鈥?094/鈥婸D-80-0822A View Article
    Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075鈥?082. doi:10.鈥?890/鈥?8-2347.鈥? PubMed View Article
    Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739鈥?45. doi:10.鈥?093/鈥媕xb/鈥媏rj088 PubMed View Article
    van de Ven WTG, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409鈥?423. doi:10.鈥?307/鈥?871139 PubMed Central PubMed View Article
    van de Ven W, Puthoff D, LeVesque C, Perring T, Walling LL (2002) Activation of novel signalling pathways by phloem-feeding whiteflies. IOBC WPRS Bull 25:33鈥?0. http://鈥媤ww.鈥媔obc-wprs.鈥媜rg/鈥媝ub/鈥媌ulletins/鈥媔obc-wprs_鈥媌ulletin_鈥?002_鈥?5_鈥?6.鈥媝df#page=鈥?3
    Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195鈥?16. doi:10.鈥?007/鈥媠003440000026 PubMed
    Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859鈥?66. doi:10.鈥?104/鈥媝p.鈥?07.鈥?13142 PubMed Central PubMed View Article
    Wang CX, Xue M, Bi MJ, Li QL, Hu HY (2010) Temporal effect of tobacco defense responses to Myzus persicae (Sulzer) (Homoptera: Aphididae) induced by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype. Acta Entomol Sin 53:314鈥?22
    Will T, Aart JEB (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729鈥?37. doi:10.鈥?093/鈥媕xb/鈥媏rj089 PubMed View Article
    Xu SY (2001) Tobacco pest control in China. Science Press, Beijing
    Xue M, Wang CX, Bi MJ, Li Q, Liu TX (2010) Induced defense by Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environ Entomol 39:883鈥?91. doi:10.鈥?603/鈥婨N09307 PubMed View Article
    Yan Y, Liu W, Wan F (2008) Comparison of alkaline phosphatase in Bemisia tabaci B-biotype (Homoptera: Aleyrodidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) at different developmental stages. Acta Entomol Sin 51:1鈥?
    Yan Y, Peng L, Liu W, Wan F (2011) Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci biotype B and Trialeurodes vaporariorum. J Insect Sci 11:9. doi:10.鈥?673/鈥?31.鈥?11.鈥?109 PubMed Central PubMed View Article
    Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866鈥?75. doi:10.鈥?104/鈥媝p.鈥?06.鈥?90035 PubMed Central PubMed View Article
    Zhang GF, Lovei GL, Hu M, Wan FH (2013a) Asymmetric consequences of host plant occupation on the competition between the whiteflies Bemisia tabaci cryptic species MEAM1 and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag Sci 70:1797鈥?807. doi:10.鈥?002/鈥媝s.鈥?713 View Article
    Zhang PJ, Li WD, Huang F, Zhang JM, Xu FC, Lu YB (2013b) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612鈥?19. doi:10.鈥?007/鈥媠10886-013-0283-2 PubMed View Article
  • 作者单位:Xiao Zhang (1)
    Ming Xue (1)
    Haipeng Zhao (1)

    1. College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, China
  • 刊物主题:Entomology; Invertebrates; Plant Sciences; Ecology; Behavioural Sciences; Plant Pathology;
  • 出版者:Springer Netherlands
  • ISSN:1872-8847
文摘
Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) nymphs, when feeding on tobacco, generate changes that have negative systemic effects on the aphid Myzus persicae. To determine whether differences exist among defense responses induced by B. tabaci MEAM1, the whitefly Trialeurodes vaporariorum, and M. persicae, we compared salicylic acid (SA) contents in tobacco plants infested by adults and nymphs of these three species, as well as their effect on subsequently colonizing M. persicae. Plants infested with B. tabaci MEAM1 nymphs had 19.1- and 10.2-fold higher local and systemic SA levels, respectively, than the control. Infestation with T. vaporariorum caused a smaller (4.4- and 2.3-fold, respectively) increase. Nymphs of either whitefly species had significantly greater effects on SA levels than adults. SA levels in M. persicae-infested plants were 3.0- and 1.2-fold higher than in the control. Pre-infestation with B. tabaci MEAM1 nymphs significantly reduced M. persicae survival and fecundity, while T. vaporariorum nymphs reduced survival but had no effect on fecundity compared with the uninfested control. Pre-infestation with M. persicae or whitefly adults had no obvious local or systemic effects on subsequent M. persicae. The SA pathway may be a core B. tabaci MEAM1-induced defense against aphids in tobacco.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700