Tomographic PIV measurements of a regenerating hairpin vortex
详细信息    查看全文
  • 作者:D. R. Sabatino ; T. Rossmann
  • 刊名:Experiments in Fluids
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:57
  • 期:1
  • 全文大小:6,571 KB
  • 参考文献:Acarlar MS, Smith CR (1987) A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J Fluid Mech 175:1鈥?1CrossRef
    Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids. doi:10.鈥?063/鈥?.鈥?717527
    Adrian R, Meinhart C, Tomkins C (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1鈥?4. doi:10.鈥?017/鈥婼002211200000158鈥? CrossRef MathSciNet MATH
    Bake S, Meyer D, Rist U (2002) Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation. J Fluid Mech 459:217鈥?43. doi:10.鈥?017/鈥婼002211200200795鈥? MATH
    Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933鈥?47. doi:10.鈥?007/鈥媠00348-006-0212-z CrossRef
    Elsinga GE, Adrian RJ, Van Oudheusden BW, Scarano F (2010) Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. J Fluid Mech 644:35鈥?0. doi:10.鈥?017/鈥婼002211200999204鈥? CrossRef MATH
    Ersoy S, Walker JDA (1985) Viscous flow induced by counter rotating vortices. Phys Fluids 28(9):2687鈥?698. doi:10.鈥?063/鈥?.鈥?65226 CrossRef MATH
    Fabris D, Liepmann D, Marcus D (1996) Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys Fluids 8(10):2640鈥?649. doi:10.鈥?063/鈥?.鈥?69049 CrossRef
    Foucaut JM, Stanislas M (2002) Some considerations on the accuracy and frequency response of some derivative filters applied to PIV vector fields. Meas Sci Technol 13(7):1058鈥?071. doi:10.鈥?088/鈥?957-0233-13-7-313 CrossRef
    Green M, Rowley C, Haller G (2007) Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech 572:111鈥?20. doi:10.鈥?017/鈥婼002211200600364鈥? CrossRef MathSciNet MATH
    Haidari AH, Smith CR (1994) The generation and regeneration of single hairpin vortices. J Fluid Mech 277:135鈥?62. doi:10.鈥?017/鈥婼002211209400271鈥? CrossRef
    Hon T, Walker JDA (1991) Evolution of hairpin vortices in a shear flow. Comput Fluids 20(3):343鈥?58. doi:10.鈥?016/鈥?045-7930(91)90050-R CrossRef MATH
    Huang RF, Hsu CM, Lin WC (2014) Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate. Exp Thermal Fluid Sci 55:187鈥?99. doi:10.鈥?016/鈥媕.鈥媏xpthermflusci.鈥?014.鈥?3.鈥?12 CrossRef
    Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69鈥?4. doi:10.鈥?017/鈥婼002211209500046鈥? CrossRef MathSciNet MATH
    Moin P, Adrian RJ, Kim J (1987) Stochastic estimation of organized structures in turbulent channel flow. In: 6th Symposium on Turbulent Shear Flows, pp 16鈥?9
    Ringuette M, Wu M, Martin P (2007) Coherent structures in direct numerical simulation of turbulent boundary layers at mach 3. J Fluid Mech. doi:10.鈥?017/鈥婼002211200700902鈥? MATH
    Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601鈥?39. doi:10.鈥?146/鈥媋nnurev.鈥媐l.鈥?3.鈥?10191.鈥?03125 CrossRef
    Singer BA, Joslin RD (1994) Metamorphosis of a hairpin vortex into a young turbulent spot. Phys Fluids 6(11):3724鈥?736. doi:10.鈥?063/鈥?.鈥?68363 CrossRef
    Smith CR, Walker JDA, Haidari AH, Sobrun U (1991) On the dynamics of near-wall turbulence. Philos Trans R Soc Lond Ser A Phys Eng Sci 336(1641):131鈥?75. doi:10.鈥?098/鈥媟sta.鈥?991.鈥?070 CrossRef MATH
    Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8(12):1441CrossRef
    Spalding DB (1961) A single formula for the law of the wall. J Appl Mech 28(3):455鈥?58CrossRef MATH
    Suponitsky V, Cohen J, Bar-Yoseph PZ (2005) The generation of streaks and hairpin vortices from a localized vortex disturbance embedded in unbounded uniform shear flow. J Fluid Mech 535:65鈥?00. doi:10.鈥?017/鈥婼002211200500445鈥? CrossRef MathSciNet MATH
    Svizher A, Cohen J (2006) Holographic particle image velocimetry measurements of hairpin vortices in a subcritical air channel flow. Phys Fluids 18(1):014105. doi:10.鈥?063/鈥?.鈥?158429 CrossRef
    Wallace JM, Eckelmann H, Brodkey RS (1972) The wall region in turbulent shear flow. J Fluid Mech 54:39鈥?8. doi:10.鈥?017/鈥婼002211207200051鈥? CrossRef
    Wieneke B (2008) Volume self-calibration for 3d particle image velocimetry. Exp Fluids 45:549鈥?56CrossRef
    Worth NA, Nickels TB, Swaminathan N (2010) A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp Fluids 49(3):637鈥?56. doi:10.鈥?007/鈥媠00348-010-0840-1 CrossRef
    Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353鈥?96. doi:10.鈥?017/鈥婼002211209900467鈥媂 CrossRef MathSciNet MATH
  • 作者单位:D. R. Sabatino (1)
    T. Rossmann (1)

    1. Department of Mechanical Engineering, Lafayette College, Easton, PA, 18042, USA
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Fluids
    Industrial Chemistry and Chemical Engineering
    Measurement Science and Instrumentation
    Thermodynamics
    Theoretical and Applied Mechanics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1114
文摘
The three-dimensional formation and regeneration of a hairpin vortex in a laminar boundary layer is studied in a free-surface water channel. The vortex is generated by fluid injection through a narrow slot into a laminar boundary layer \((Re_{\delta ^*} = 485)\) and recorded with tomographic particle image velocimetry. The swirling strength based on the \(\lambda _2\) criterion shows that the hairpin initially forms at the upstream edge of the elongated ring vortex produced by the injection. The elongated ring vortex decays while the hairpin vortex strengthens. Because the hairpin vortex is of sufficient strength, it forms a kink in the legs as a result of inviscid induction. A bridging structure forms between the legs initially upstream of the kink. As this structure dissipates, another bridging structure forms downstream of the kink and closes the vortex loop between the legs. This pinches off the original hairpin head such that two distinct vortices result. The formation of the secondary hairpin head does not appear to be preceded by a reduction in the spanwise gap between the legs or significant change in height above the wall as has been seen when exposed to a mean turbulent profile. Instead, the formation is preceded by the stretching of the hairpin legs downstream of the kink, exposes the ejected fluid between the legs to boundary layer flow producing conditions similar to those that formed the initial hairpin vortex. Supported by the National Science Foundation under Grant CBET-1040236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700